Menu Close

1-1-2-x-x-1-dx-2-0-2-2sinx-4cosx-sinx-cosx-dx-




Question Number 174341 by behi834171 last updated on 31/Jul/22
    1.∫_(    1) ^(          2)  (√(x+(√(x−1)) )) dx=?       2.   ∫_(     0) ^(        (𝛑/2))   ((2sinx+4cosx)/(sinx+cosx))  dx=?
1.21x+x1dx=?2.π202sinx+4cosxsinx+cosxdx=?
Commented by mnjuly1970 last updated on 30/Jul/22
 2.(   3π/2 )
2.(3π/2)
Answered by MJS_new last updated on 30/Jul/22
1.  ∫(√(x+(√(x−1))))dx=       [t=(√(x−1))+(1/2) → dx=(2t−1)dt]  =(1/2)∫(2t−1)(√(4t^2 +3))dt=       [u=((2t+(√(4t^2 +3)))/( (√3))) → dt=((√(4t^2 +3))/(2u))du]  =∫(((3(√3))/(32))u^2 −(3/(16))u+((3(√3))/(32))−(3/8)u^(−1) −((3(√3))/(32))u^(−2) −(3/(16))u^(−3) −((3(√3))/(32))u^(−4) )du  the rest is easy
1.x+x1dx=[t=x1+12dx=(2t1)dt]=12(2t1)4t2+3dt=[u=2t+4t2+33dt=4t2+32udu]=(3332u2316u+333238u13332u2316u33332u4)dutherestiseasy
Commented by behi834171 last updated on 30/Jul/22
very nice!   thank you so much dear master.
verynice!thankyousomuchdearmaster.
Answered by Frix last updated on 30/Jul/22
∫_0 ^(π/2)  ((2sin x +4cos x)/(sin x +cos x))dx=  =3∫_0 ^(π/2) dx−∫_0 ^(π/2) ((sin x −cos x)/(sin x +cos x))dx  3∫_0 ^(π/2) dx=((3π)/2)  −∫_0 ^(π/2) ((sin x −cos x)/(sin x +cos x))dx=  =∫_0 ^(π/2) ((d[sin x +cos x])/(sin x +cos x))=  =[ln ∣sin x +cos x∣]_0 ^(π/2) =0  ⇒ answer is ((3π)/2)
π/202sinx+4cosxsinx+cosxdx==3π/20dxπ/20sinxcosxsinx+cosxdx3π/20dx=3π2π/20sinxcosxsinx+cosxdx==π/20d[sinx+cosx]sinx+cosx==[lnsinx+cosx]0π/2=0answeris3π2
Commented by behi834171 last updated on 30/Jul/22
thank you very much sir.  your answer is true.
thankyouverymuchsir.youransweristrue.
Answered by behi834171 last updated on 31/Jul/22
let: x−1=t^2 ⇒dx=2tdt  I=∫2t(√(t^2 +1+t))dt=∫(2t+1−1)(√(t^2 +t+1))dt=  =∫(2t+1)(√(t^2 +t+1))dt−∫(√(t^2 +t+1))dt=I_1 +I_2   I_1 =(2/3)(t^2 +t+1)^(3/2) +const.  I_2 =∫(√((t+(1/2))^2 +(((√3)/2))^2 ))dt=  =((2t+1)/4)(√(t^2 +t+1))+(3/8)sinh^(−1) (((2t+1)/( (√3))))+const.  ⇒I=(2/3)(x+(√(x−1)))^(3/2) +(((2(√(x−1))+1)/4)).(√(x+(√(x−1))))+  +  (3/8)sinh^(−1)  (((2(√(x−1))+1)/( (√3))))+const.  ■  [I_1 =2(√3)−(2/3)=((6(√3)−2)/3)  I_2 =((3(√(3 ))−1)/4)+(3/(10))=((15(√3)+1)/(20))  ⇒I=I_1 +I_2 =((165(√3)−37)/(60))]
let:x1=t2dx=2tdtI=2tt2+1+tdt=(2t+11)t2+t+1dt==(2t+1)t2+t+1dtt2+t+1dt=I1+I2I1=23(t2+t+1)32+const.I2=(t+12)2+(32)2dt==2t+14t2+t+1+38sinh1(2t+13)+const.I=23(x+x1)32+(2x1+14).x+x1++38sinh1(2x1+13)+const.◼[I1=2323=6323I2=3314+310=153+120I=I1+I2=16533760]
Commented by peter frank last updated on 01/Aug/22
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *