Question Number 174341 by behi834171 last updated on 31/Jul/22

Commented by mnjuly1970 last updated on 30/Jul/22

Answered by MJS_new last updated on 30/Jul/22
![1. ∫(√(x+(√(x−1))))dx= [t=(√(x−1))+(1/2) → dx=(2t−1)dt] =(1/2)∫(2t−1)(√(4t^2 +3))dt= [u=((2t+(√(4t^2 +3)))/( (√3))) → dt=((√(4t^2 +3))/(2u))du] =∫(((3(√3))/(32))u^2 −(3/(16))u+((3(√3))/(32))−(3/8)u^(−1) −((3(√3))/(32))u^(−2) −(3/(16))u^(−3) −((3(√3))/(32))u^(−4) )du the rest is easy](https://www.tinkutara.com/question/Q174344.png)
Commented by behi834171 last updated on 30/Jul/22

Answered by Frix last updated on 30/Jul/22
![∫_0 ^(π/2) ((2sin x +4cos x)/(sin x +cos x))dx= =3∫_0 ^(π/2) dx−∫_0 ^(π/2) ((sin x −cos x)/(sin x +cos x))dx 3∫_0 ^(π/2) dx=((3π)/2) −∫_0 ^(π/2) ((sin x −cos x)/(sin x +cos x))dx= =∫_0 ^(π/2) ((d[sin x +cos x])/(sin x +cos x))= =[ln ∣sin x +cos x∣]_0 ^(π/2) =0 ⇒ answer is ((3π)/2)](https://www.tinkutara.com/question/Q174352.png)
Commented by behi834171 last updated on 30/Jul/22

Answered by behi834171 last updated on 31/Jul/22
![let: x−1=t^2 ⇒dx=2tdt I=∫2t(√(t^2 +1+t))dt=∫(2t+1−1)(√(t^2 +t+1))dt= =∫(2t+1)(√(t^2 +t+1))dt−∫(√(t^2 +t+1))dt=I_1 +I_2 I_1 =(2/3)(t^2 +t+1)^(3/2) +const. I_2 =∫(√((t+(1/2))^2 +(((√3)/2))^2 ))dt= =((2t+1)/4)(√(t^2 +t+1))+(3/8)sinh^(−1) (((2t+1)/( (√3))))+const. ⇒I=(2/3)(x+(√(x−1)))^(3/2) +(((2(√(x−1))+1)/4)).(√(x+(√(x−1))))+ + (3/8)sinh^(−1) (((2(√(x−1))+1)/( (√3))))+const. ■ [I_1 =2(√3)−(2/3)=((6(√3)−2)/3) I_2 =((3(√(3 ))−1)/4)+(3/(10))=((15(√3)+1)/(20)) ⇒I=I_1 +I_2 =((165(√3)−37)/(60))]](https://www.tinkutara.com/question/Q174399.png)
Commented by peter frank last updated on 01/Aug/22
