Menu Close

1-1-3-1-1-3-




Question Number 189559 by 073 last updated on 18/Mar/23
 (−1)^(1/3) =?  ((−1))^(1/3) =?
$$\:\left(−\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} =? \\ $$$$\sqrt[{\mathrm{3}}]{−\mathrm{1}}=? \\ $$
Answered by Frix last updated on 18/Mar/23
−1=e^(iπ)   ⇒  (−1)^(1/n) =e^(i(π/n)) =cos (π/n) +i sin (π/n)  (−1)^(1/2) =e^(i(π/2)) =cos (π/2) +i sin (π/2) =i  (−1)^(1/3) =cos (π/3) +i sin (π/3) =(1/2)+((√3)/2)i
$$−\mathrm{1}=\mathrm{e}^{\mathrm{i}\pi} \\ $$$$\Rightarrow \\ $$$$\left(−\mathrm{1}\right)^{\frac{\mathrm{1}}{{n}}} =\mathrm{e}^{\mathrm{i}\frac{\pi}{{n}}} =\mathrm{cos}\:\frac{\pi}{{n}}\:+\mathrm{i}\:\mathrm{sin}\:\frac{\pi}{{n}} \\ $$$$\left(−\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} =\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{2}}} =\mathrm{cos}\:\frac{\pi}{\mathrm{2}}\:+\mathrm{i}\:\mathrm{sin}\:\frac{\pi}{\mathrm{2}}\:=\mathrm{i} \\ $$$$\left(−\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} =\mathrm{cos}\:\frac{\pi}{\mathrm{3}}\:+\mathrm{i}\:\mathrm{sin}\:\frac{\pi}{\mathrm{3}}\:=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *