Question Number 104246 by Anindita last updated on 20/Jul/20
$$\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}\right)\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}\right)\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{5}}\right)….\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{99}}\right)\:=? \\ $$
Answered by mathmax by abdo last updated on 20/Jul/20
$$\mathrm{let}\:\mathrm{A}_{\mathrm{n}} =\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}\right)\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}\right)….\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{n}}\right)\:\Rightarrow\mathrm{A}_{\mathrm{n}} =\frac{\mathrm{2}}{\mathrm{3}}×\frac{\mathrm{3}}{\mathrm{4}}×\frac{\mathrm{4}}{\mathrm{5}}×…\frac{\mathrm{n}−\mathrm{2}}{\mathrm{n}−\mathrm{1}}×\frac{\mathrm{n}−\mathrm{1}}{\mathrm{n}} \\ $$$$\Rightarrow\mathrm{A}_{\mathrm{n}} =\frac{\mathrm{2}}{\mathrm{n}}\:\mathrm{and}\:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}\right)\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}\right)…\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{99}}\right)\:=\frac{\mathrm{2}}{\mathrm{99}} \\ $$
Answered by OlafThorendsen last updated on 20/Jul/20
$$\mathrm{P}\:=\:\underset{{k}=\mathrm{3}} {\overset{\mathrm{99}} {\prod}}\left(\mathrm{1}−\frac{\mathrm{1}}{{k}}\right) \\ $$$$\mathrm{P}\:=\:\underset{{k}=\mathrm{3}} {\overset{\mathrm{99}} {\prod}}\frac{{k}−\mathrm{1}}{{k}} \\ $$$$\mathrm{P}\:=\:\frac{\mathrm{2}}{\mathrm{3}}×\frac{\mathrm{3}}{\mathrm{4}}×\frac{\mathrm{4}}{\mathrm{5}}….\frac{\mathrm{97}}{\mathrm{98}}×\frac{\mathrm{98}}{\mathrm{99}} \\ $$$$\mathrm{P}\:=\:\frac{\mathrm{2}}{\mathrm{99}} \\ $$
Answered by Dwaipayan Shikari last updated on 20/Jul/20
$$\underset{\mathrm{n}=\mathrm{3}} {\overset{\mathrm{99}} {\prod}}\left(\frac{\mathrm{n}}{\mathrm{n}+\mathrm{1}}\right)=\frac{\mathrm{2}}{\mathrm{3}}.\frac{\mathrm{3}}{\mathrm{4}}.\frac{\mathrm{4}}{\mathrm{5}}….\frac{\mathrm{98}}{\mathrm{99}}=\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{3}}.\frac{\mathrm{3}}{\mathrm{4}}.\frac{\mathrm{4}}{\mathrm{5}}…..\frac{\mathrm{97}}{\mathrm{98}}.\frac{\mathrm{98}}{\mathrm{99}}\right)=\frac{\mathrm{2}}{\mathrm{99}} \\ $$