Menu Close

1-1-3x-4-3-4x-3x-2-dt-please-help-me-




Question Number 152588 by rexford last updated on 30/Aug/21
∫_(−1 ) ^1 ((3x+4)/(3+4x+3x^2 ))dt  please,help me
113x+43+4x+3x2dtplease,helpme
Answered by qaz last updated on 30/Aug/21
∫_(−1) ^(+1) ((3x+4)/(3+4x+3x^2 ))dt=((3x+4)/(3+4x+3x^2 ))∙t∣_(−1) ^1 =((6x+8)/(3+4x+3x^2 ))
1+13x+43+4x+3x2dt=3x+43+4x+3x2t11=6x+83+4x+3x2
Answered by puissant last updated on 30/Aug/21
=(1/2)∫_(−1) ^1 ((6x+4+4)/(3x^2 +4x+3))dx   = (1/2)∫_(−1) ^1 ((6x+4)/(3x^2 +4x+3))dx+(2/3)∫_(−1) ^(+1) (1/(x^2 +(4/3)x+1))dx  =(1/2)[ln∣3x^2 +4x+3∣]_(−1) ^1 +(2/3)Q  =(1/2)ln5+(2/3)Q  Q=∫_(−1) ^1 (1/(x^2 +(4/3)x+1))dx = ∫_(−1) ^1 (1/((x+(2/3))^2 −(4/9)+(9/9)))dx  =∫_(−1) ^1 (1/((x+(2/3))^2 +(5/9)))dx =(9/5)∫_(−1) ^1 (1/([((3/( (√5)))(x+(2/3)))^2 +1]))dx  u=(3/( (√5)))(x+(2/3)) → dx=((√5)/3)du  ⇒ Q=(9/5)×((√5)/3)∫_(−1) ^1 (1/(u^2 +1))du  =(3/( (√5)))[arctan(u)]_(−1) ^1 = (3/( (√5)))×(π/2).  ∴∵  I=(1/2)ln5+(3/( (√5)))×(2/3)×(π/2)              = (1/2)ln5+(π/( (√5)))..
=12116x+4+43x2+4x+3dx=12116x+43x2+4x+3dx+231+11x2+43x+1dx=12[ln3x2+4x+3]11+23Q=12ln5+23QQ=111x2+43x+1dx=111(x+23)249+99dx=111(x+23)2+59dx=95111[(35(x+23))2+1]dxu=35(x+23)dx=53duQ=95×53111u2+1du=35[arctan(u)]11=35×π2.∴∵I=12ln5+35×23×π2=12ln5+π5..
Answered by phanphuoc last updated on 30/Aug/21
=1/2∫_(−1) ^1 ((6x+4dx)/(3+4x+3x^2 ))+2∫_(−1) ^1 (dx/(3+4x+3x^2 ))  =1/2ln(1+4x+3x^2 )_(−1) ^1 +2/3∫_(−1) ^1 (dx/(1+4/3x+x^2 ))  =...+2/(√5)arctan(((x+2/3)/( (√5)/3)))_(−1) ^1 ====.....
=1/2116x+4dx3+4x+3x2+211dx3+4x+3x2=1/2ln(1+4x+3x2)11+2/311dx1+4/3x+x2=+2/5arctan(x+2/35/3)11====..

Leave a Reply

Your email address will not be published. Required fields are marked *