Question Number 145777 by Engr_Jidda last updated on 08/Jul/21
$$\int\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} }}{dx} \\ $$
Answered by ArielVyny last updated on 08/Jul/21
$$\int\frac{\sqrt{\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} }}{\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} }{dx}=\int\frac{\sqrt{\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} }}{\left(\mathrm{1}−\mathrm{3}{x}\right)\left(\mathrm{1}+\mathrm{3}{x}\right)}{dx} \\ $$$$\frac{{a}}{\mathrm{1}−\mathrm{3}{x}}+\frac{{b}}{\mathrm{1}+\mathrm{3}{x}}=\frac{\mathrm{1}}{\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} } \\ $$$$\frac{{a}+\mathrm{3}{ax}+{b}−\mathrm{3}{bx}}{\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} } \\ $$$$\frac{{a}+{b}+{x}\left(\mathrm{3}{a}−\mathrm{3}{b}\right)}{\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} } \\ $$$$\begin{cases}{{a}+{b}=\mathrm{1}}\\{{a}={b}}\end{cases}\rightarrow{a}={b}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\left(\frac{\sqrt{\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} }}{\mathrm{1}−\mathrm{3}{x}}+\frac{\sqrt{\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} }}{\mathrm{1}+\mathrm{3}{x}}\right){dx} \\ $$$${posons}\:\mathrm{3}{x}={sint}\rightarrow\mathrm{3}{dx}={costdt} \\ $$$$\frac{\mathrm{1}}{\mathrm{6}}\int\frac{{cos}^{\mathrm{2}} {t}}{\mathrm{1}−{sint}}{dt}+\frac{{cos}^{\mathrm{2}} {t}}{\mathrm{1}+{sint}}{dt} \\ $$$$\frac{\mathrm{1}}{\mathrm{6}}\int\left(\mathrm{1}+{sint}\right)+\left(\mathrm{1}−{sint}\right)=\frac{\mathrm{1}}{\mathrm{6}}\int\mathrm{2}{dt}=\frac{\mathrm{1}}{\mathrm{3}}{t} \\ $$$$\int\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} }}=\frac{\mathrm{1}}{\mathrm{3}}{arcsin}\left(\mathrm{3}{x}\right)+{cte} \\ $$
Answered by mathmax by abdo last updated on 08/Jul/21
$$\mathrm{I}=\int\:\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{1}−\mathrm{9x}^{\mathrm{2}} }}\:\Rightarrow\mathrm{I}=_{\mathrm{3x}=\mathrm{sint}} \:\:\int\:\:\frac{\mathrm{cost}}{\mathrm{3cost}}\mathrm{dt}\:=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{t}\:+\mathrm{K} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{arcsin}\left(\mathrm{3x}\right)+\mathrm{K} \\ $$