Menu Close

1-1-cos-i-sin-1-2-i-2-cot-2-prove-




Question Number 129404 by bemath last updated on 15/Jan/21
 (1/(1−cos θ−i sin θ)) = (1/2) +(i/2).cot ((θ/2))  prove.
11cosθisinθ=12+i2.cot(θ2)prove.
Answered by MJS_new last updated on 15/Jan/21
θ=2α  (1−cos 2α −i sin 2α)^(−1) =  =(1−((1−tan^2  α)/(1+tan^2  α))−((2tan α)/(1+tan^2  α))i)^(−1) =  =(((2t^2 −2it)/(t^2 +1)))^(−1) =((t^2 +1)/(2t^2 −2it))=(t/(2t))+(i/(2t))=  =(1/2)+(i/2)cot α =(1/2)+(i/2)cot (θ/2)
θ=2α(1cos2αisin2α)1==(11tan2α1+tan2α2tanα1+tan2αi)1==(2t22itt2+1)1=t2+12t22it=t2t+i2t==12+i2cotα=12+i2cotθ2
Commented by MJS_new last updated on 16/Jan/21
yes
yes
Commented by liberty last updated on 16/Jan/21
t = tan α?
t=tanα?
Answered by physicstutes last updated on 15/Jan/21
 ((1/(1−cos θ−isin θ)))(((1−cos θ + i sin θ)/(1−cos θ+isin θ))) = ((1−cos θ + isin θ)/((1−cos θ)^2 +(sin θ)^2 ))    = ((1−cos θ + isin θ)/(1−2cos θ + cos^2 θ+sin^2 θ)) = ((1−cos θ + isin θ)/(2−2cos θ)) = (1/2)[((1−(1−2sin^2 (θ/2)) + i 2sin(θ/2)cos(θ/2))/(1−(1−2sin^2 (θ/2))))]   = (1/2)[1 + icot (θ/2)]= (1/2) + (i/2) cot ((θ/2))
(11cosθisinθ)(1cosθ+isinθ1cosθ+isinθ)=1cosθ+isinθ(1cosθ)2+(sinθ)2=1cosθ+isinθ12cosθ+cos2θ+sin2θ=1cosθ+isinθ22cosθ=12[1(12sin2θ2)+i2sinθ2cosθ21(12sin2θ2)]=12[1+icotθ2]=12+i2cot(θ2)

Leave a Reply

Your email address will not be published. Required fields are marked *