Question Number 85414 by M±th+et£s last updated on 21/Mar/20
$$\int\frac{\mathrm{1}}{\mathrm{1}+\sqrt{{cos}\left({x}\right)}\:}\:{dx} \\ $$
Commented by M±th+et£s last updated on 21/Mar/20
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{\mathrm{1}+\sqrt{{cos}\left({x}\right)}}\:{dx}\:\:\:{typo}….\: \\ $$
Answered by mind is power last updated on 23/Mar/20
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\left(\mathrm{1}−\sqrt{{cos}\left({x}\right)}\right)\left(\mathrm{1}+{cos}\left({x}\right)\right)}{\mathrm{1}−{cos}^{\mathrm{2}} \left({x}\right)}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{{sin}^{\mathrm{2}} \left({x}\right)}.\left(\mathrm{1}−\sqrt{{cos}\left({x}\right)}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\left(\mathrm{1}−\sqrt{{cos}\left({x}\right)}\right){dx}}{\mathrm{4}{sin}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right){cos}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}\: \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\left(\mathrm{1}−\sqrt{{cos}\left({x}\right)}\right)}{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{dx}\:{by}\:{part}\: \\ $$$${u}'=\frac{\mathrm{1}}{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}=\frac{\mathrm{1}}{\mathrm{2}}\left({cot}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)+\mathrm{1}\right)\Rightarrow{u}=−{cot}\left(\frac{{x}}{\mathrm{2}}\right) \\ $$$$=\left[−{cot}\left(\frac{{x}}{\mathrm{2}}\right)\left(\mathrm{1}−\sqrt{{cos}\left({x}\right)}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} +\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{cot}\left(\frac{{x}}{\mathrm{2}}\right).{sin}\left({x}\right)}{\mathrm{2}\sqrt{{cos}\left({x}\right)}}{dx} \\ $$$$=−\mathrm{1}+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{cos}\left(\frac{{x}}{\mathrm{2}}\right){sin}\left({x}\right)}{{sin}\left(\frac{{x}}{\mathrm{2}}\right).\mathrm{2}\sqrt{{cos}\left({x}\right)}}\:=−\mathrm{1}+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{cos}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{\:\sqrt{{cos}\left({x}\right)}}..{A} \\ $$$${A}=−\mathrm{1}+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}+{cos}\left({x}\right)}{\mathrm{2}\sqrt{{cos}\left({x}\right)}} \\ $$$$=−\mathrm{1}+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\left(\frac{\mathrm{1}}{\mathrm{2}}−{sin}\left(\frac{{x}}{\mathrm{2}}\right){cos}\left(\frac{{x}}{\mathrm{2}}\right)\right.}{\:\sqrt{{sin}\left({x}\right)}}{dx} \\ $$$$=−\mathrm{1}+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}+{sin}\left({x}\right)}{\mathrm{2}\sqrt{{sin}\left({x}\right)}}{dx}=−\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\left\{\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\:\sqrt{{sin}\left({x}\right)}}+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{{sin}\left({x}\right)}{dx}\right\} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\:\sqrt{{sin}\left({x}\right)}} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\:\sqrt{\mathrm{2}{sin}\left(\frac{{x}}{\mathrm{2}}\right){cos}\left(\frac{{x}}{\mathrm{2}}\right)}}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\:\sqrt{\mathrm{1}−\left({sin}\left(\frac{{x}}{\mathrm{2}}\right)−{cos}\left(\frac{{x}}{\mathrm{2}}\right)\right)^{\mathrm{2}} }} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\:\sqrt{\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{4}}−\frac{{x}}{\mathrm{2}}\right)}}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{2}{dr}}{\:\sqrt{\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} \left({r}\right)}}=\mathrm{2}{F}\left(\frac{\pi}{\mathrm{4}}\mid\mathrm{2}\right) \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{{sin}\left({x}\right)}{dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\mathrm{1}−\left({sin}\left(\frac{{x}}{\mathrm{2}}\right)−{cos}\left(\frac{{x}}{\mathrm{2}}\right)\right)^{\mathrm{2}} }{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{4}}−\frac{{x}}{\mathrm{2}}\right)}{dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \sqrt{\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} \left({r}\right)}{dr}=\mathrm{2}{E}\left(\frac{\pi}{\mathrm{4}}\mid\mathrm{2}\right) \\ $$$$=−\mathrm{1}+\mathrm{2}\left({E}\left(\frac{\pi}{\mathrm{4}}\mid\mathrm{2}\right)+{F}\left(\frac{\pi}{\mathrm{4}}\mid\mathrm{2}\right)\right) \\ $$$$ \\ $$$$ \\ $$
Commented by M±th+et£s last updated on 23/Mar/20
$${thank}\:{you}\:{so}\:{much}\:{sir} \\ $$