Menu Close

1-1-e-x-dx-




Question Number 84219 by Rio Michael last updated on 10/Mar/20
∫_(−1) ^1 e^(∣x∣) dx =?
$$\int_{−\mathrm{1}} ^{\mathrm{1}} {e}^{\mid{x}\mid} {dx}\:=? \\ $$
Answered by TANMAY PANACEA last updated on 10/Mar/20
∫_(−1) ^0 e^(−x) dx+∫_0 ^1 e^x dx  =∣(e^(−x) /(−1))∣_(−1) ^0 +∣(e^x /1)∣_0 ^1   =(e^(−0) /(−1))−(e^1 /(−1))+(e/1)−(e^0 /1)  =−1+e+e−1=2(e−1)
$$\int_{−\mathrm{1}} ^{\mathrm{0}} {e}^{−{x}} {dx}+\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{{x}} {dx} \\ $$$$=\mid\frac{{e}^{−{x}} }{−\mathrm{1}}\mid_{−\mathrm{1}} ^{\mathrm{0}} +\mid\frac{{e}^{{x}} }{\mathrm{1}}\mid_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\frac{{e}^{−\mathrm{0}} }{−\mathrm{1}}−\frac{{e}^{\mathrm{1}} }{−\mathrm{1}}+\frac{{e}}{\mathrm{1}}−\frac{{e}^{\mathrm{0}} }{\mathrm{1}} \\ $$$$=−\mathrm{1}+{e}+{e}−\mathrm{1}=\mathrm{2}\left({e}−\mathrm{1}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *