Menu Close

1-1-ln-x-dx-




Question Number 153164 by alisiao last updated on 05/Sep/21
∫_(−1) ^( 1) ln(𝚪(x)) dx
11ln(Γ(x))dx
Answered by Ar Brandon last updated on 05/Sep/21
Ω=∫_(−1) ^1 ln(Γ(x))dx=∫_(−1) ^0 ln(Γ(x))dx_(Ω_1 ) +∫_0 ^1 ln(Γ(x))dx_(Ω_2 )   Ω_2 =∫_0 ^1 ln(Γ(x))dx=∫_0 ^1 ln(Γ(1−x))dx        =(1/2)∫_0 ^1 {ln(Γ(x))+ln(Γ(1−x))dx}dx        =(1/2)∫_0 ^1 ln(Γ(x)Γ(1−x))dx=(1/2)∫_0 ^1 ln((π/(sin(πx))))dx        =((lnπ)/2)−(1/2)∫_0 ^1 ln(sin(πx))dx=((lnπ)/2)−(1/(2π))∫_0 ^π ln(sin(u))du_(=0)
Ω=11ln(Γ(x))dx=10ln(Γ(x))dxΩ1+01ln(Γ(x))dxΩ2Ω2=01ln(Γ(x))dx=01ln(Γ(1x))dx=1201{ln(Γ(x))+ln(Γ(1x))dx}dx=1201ln(Γ(x)Γ(1x))dx=1201ln(πsin(πx))dx=lnπ21201ln(sin(πx))dx=lnπ212π0πln(sin(u))du=0

Leave a Reply

Your email address will not be published. Required fields are marked *