Menu Close

1-1-pi-2-1-pi-2-2pi-2-2-pi-2-3pi-2-3-pi-2-4pi-2-4-pi-2-5pi-2-5-pi-2-




Question Number 127771 by Dwaipayan Shikari last updated on 01/Jan/21
(1/(1−(π^2 /(1+π^2 −((2π^2 )/(2+π^2 −((3π^2 )/(3+π^2 −((4π^2 )/(4+π^2 −((5π^2 )/(5+π^2 ....))))))))))))
$$\frac{\mathrm{1}}{\mathrm{1}−\frac{\pi^{\mathrm{2}} }{\mathrm{1}+\pi^{\mathrm{2}} −\frac{\mathrm{2}\pi^{\mathrm{2}} }{\mathrm{2}+\pi^{\mathrm{2}} −\frac{\mathrm{3}\pi^{\mathrm{2}} }{\mathrm{3}+\pi^{\mathrm{2}} −\frac{\mathrm{4}\pi^{\mathrm{2}} }{\mathrm{4}+\pi^{\mathrm{2}} −\frac{\mathrm{5}\pi^{\mathrm{2}} }{\mathrm{5}+\pi^{\mathrm{2}} ….}}}}}} \\ $$
Commented by A8;15: last updated on 03/Jan/21
What about this one? Can you show a proof  :)
$$\left.\mathrm{What}\:\mathrm{about}\:\mathrm{this}\:\mathrm{one}?\:\mathrm{Can}\:\mathrm{you}\:\mathrm{show}\:\mathrm{a}\:\mathrm{proof}\:\::\right) \\ $$
Commented by Dwaipayan Shikari last updated on 03/Jan/21
e^π^2
$${e}^{\pi^{\mathrm{2}} } \\ $$
Commented by A8;15: last updated on 03/Jan/21
Mister. I find a proof for this. Thanks a lot for an answer :)
$$\left.\mathrm{Mister}.\:\mathrm{I}\:\mathrm{find}\:\mathrm{a}\:\mathrm{proof}\:\mathrm{for}\:\mathrm{this}.\:\mathrm{Thanks}\:\mathrm{a}\:\mathrm{lot}\:\mathrm{for}\:\mathrm{an}\:\mathrm{answer}\::\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *