Question Number 29885 by sinx last updated on 13/Feb/18
$$\int\frac{\mathrm{1}}{\mathrm{1}+\mathrm{sin}{x}}{dx}=? \\ $$
Commented by MJS last updated on 14/Feb/18
$$=\mathrm{tan}{x}−\frac{\mathrm{1}}{\mathrm{cos}{x}} \\ $$$$…\mathrm{sorry},\:\mathrm{can}'\mathrm{t}\:\mathrm{show}\:\mathrm{the}\:\mathrm{way}… \\ $$
Commented by abdo imad last updated on 14/Feb/18
$${f}\left({x}\right)=\frac{{tanx}\:{cosx}−\mathrm{1}}{{cosx}}=\:\frac{{sinx}−\mathrm{1}}{{cosx}}\:\Rightarrow \\ $$$${f}^{'} \left({x}\right)=\:\frac{{cos}^{\mathrm{2}} {x}\:+\left({sinx}−\mathrm{1}\right){sinx}}{{cos}^{\mathrm{2}} {x}}\:=\:\frac{\mathrm{1}−{sinx}}{\mathrm{1}−{sin}^{\mathrm{2}} {x}}\:=\frac{\mathrm{1}}{\mathrm{1}+{sinx}}\:{so} \\ $$$$\int\:\:\frac{{dx}}{\mathrm{1}+{sinx}}=\:{tanx}\:−\frac{\mathrm{1}}{{cosx}}\:+{k}\:. \\ $$
Answered by Joel578 last updated on 13/Feb/18
$${I}\:=\:\int\:\frac{\mathrm{1}}{\mathrm{1}\:+\:\mathrm{sin}\:{x}}\:.\:\frac{\mathrm{1}\:−\:\mathrm{sin}\:{x}}{\mathrm{1}\:−\:\mathrm{sin}\:{x}}\:{dx} \\ $$$$\:\:\:=\:\int\:\frac{\mathrm{1}\:−\:\mathrm{sin}\:{x}}{\mathrm{1}\:−\:\mathrm{sin}^{\mathrm{2}} \:{x}}\:{dx}\:=\:\int\:\frac{\mathrm{1}\:−\:\mathrm{sin}\:{x}}{\mathrm{cos}^{\mathrm{2}} \:{x}}\:{dx}\: \\ $$$$\:\:\:=\:\int\:\left(\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}} \:{x}}\:−\:\mathrm{tan}\:{x}\:\mathrm{sec}\:{x}\right)\:{dx} \\ $$$$\:\:\:=\:\int\:\mathrm{sec}^{\mathrm{2}} \:{x}\:{dx}\:−\:\int\:\mathrm{tan}\:{x}\:\mathrm{sec}\:{x}\:{dx}\: \\ $$
Commented by abdo imad last updated on 13/Feb/18
$${let}\:{put}\:{I}=\int\:\:\:\frac{{dx}}{\mathrm{1}+{sinx}}\:{the}\:{ch}.{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give} \\ $$$${I}\:=\:\int\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }=\:\:\int\:\:\:\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} \:+\mathrm{2}{t}}\:=\:\int\:\:\:\:\:\frac{{dt}}{\left({t}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=−\frac{\mathrm{1}}{{t}+\mathrm{1}}\:+{k}\:\:=\frac{−\mathrm{1}}{\mathrm{1}+{tan}\left(\frac{{x}}{\mathrm{2}}\right)}\:+{k} \\ $$
Commented by NECx last updated on 13/Feb/18
$${hmmm} \\ $$$$ \\ $$