Menu Close

1-1-sinx-dx-




Question Number 29885 by sinx last updated on 13/Feb/18
∫(1/(1+sinx))dx=?
11+sinxdx=?
Commented by MJS last updated on 14/Feb/18
=tanx−(1/(cosx))  ...sorry, can′t show the way...
=tanx1cosxsorry,cantshowtheway
Commented by abdo imad last updated on 14/Feb/18
f(x)=((tanx cosx−1)/(cosx))= ((sinx−1)/(cosx)) ⇒  f^′ (x)= ((cos^2 x +(sinx−1)sinx)/(cos^2 x)) = ((1−sinx)/(1−sin^2 x)) =(1/(1+sinx)) so  ∫  (dx/(1+sinx))= tanx −(1/(cosx)) +k .
f(x)=tanxcosx1cosx=sinx1cosxf(x)=cos2x+(sinx1)sinxcos2x=1sinx1sin2x=11+sinxsodx1+sinx=tanx1cosx+k.
Answered by Joel578 last updated on 13/Feb/18
I = ∫ (1/(1 + sin x)) . ((1 − sin x)/(1 − sin x)) dx     = ∫ ((1 − sin x)/(1 − sin^2  x)) dx = ∫ ((1 − sin x)/(cos^2  x)) dx      = ∫ ((1/(cos^2  x)) − tan x sec x) dx     = ∫ sec^2  x dx − ∫ tan x sec x dx
I=11+sinx.1sinx1sinxdx=1sinx1sin2xdx=1sinxcos2xdx=(1cos2xtanxsecx)dx=sec2xdxtanxsecxdx
Commented by abdo imad last updated on 13/Feb/18
let put I=∫   (dx/(1+sinx)) the ch.tan((x/2))=t give  I = ∫     (1/(1+((2t)/(1+t^2 )))) ((2dt)/(1+t^2 ))=  ∫    ((2dt)/(1+t^2  +2t)) = ∫     (dt/((t+1)^2 ))  =−(1/(t+1)) +k  =((−1)/(1+tan((x/2)))) +k
letputI=dx1+sinxthech.tan(x2)=tgiveI=11+2t1+t22dt1+t2=2dt1+t2+2t=dt(t+1)2=1t+1+k=11+tan(x2)+k
Commented by NECx last updated on 13/Feb/18
hmmm
hmmm

Leave a Reply

Your email address will not be published. Required fields are marked *