Menu Close

1-1-u-2-2-u-5-du-please-




Question Number 129921 by stelor last updated on 20/Jan/21
∫(1/((1−u^2 )^2 u^5 ))du=??  please...
1(1u2)2u5du=??please
Answered by Ar Brandon last updated on 20/Jan/21
u=cosθ  I=−∫((sinθdθ)/(sin^4 θcos^5 θ))=−∫(dθ/(sin^3 θcos^5 θ))  see Q129907 for similar case
u=cosθI=sinθdθsin4θcos5θ=dθsin3θcos5θseeQ129907forsimilarcase
Answered by Ar Brandon last updated on 20/Jan/21
I=∫(du/((1−u^2 )^2 u^5 ))  f(u)=(1/((1−u^2 )^2 u^5 ))=(((1−u^2 )+u^2 )/((1−u^2 )^2 u^5 ))=(1/((1−u^2 )u^5 ))+(1/((1−u^2 )^2 u^3 ))          =(((1−u^2 )+u^2 )/((1−u^2 )u^5 ))+(((1−u^2 )+u^2 )/((1−u^2 )^2 u^3 ))          =(1/u^5 )+(1/((1−u^2 )u^3 ))+(1/((1−u^2 )u^3 ))+(1/((1−u^2 )^2 u))          =(1/u^5 )+(((1−u^2 )+u^2 )/((1−u^2 )u^3 ))+(((1−u^2 )+u^2 )/((1−u^2 )u^3 ))+(((1−u^2 )+u^2 )/((1−u^2 )^2 u))           =(1/u^5 )+(1/u^3 )+(1/((1−u^2 )u))+(1/u^3 )+(1/((1−u^2 )u))+(1/((1−u^2 )u))+(u/((1−u^2 )^2 ))          =(1/u^5 )+(2/u^3 )+3((1/u)+(u/(1−u^2 )))+(u/((1−u^2 )^2 ))  ∫f(u)du=−(1/(4u^4 ))−(1/u^2 )+3ln∣u∣−((3ln(1−u^2 ))/2)+(1/(2(1−u^2 )))+C
I=du(1u2)2u5f(u)=1(1u2)2u5=(1u2)+u2(1u2)2u5=1(1u2)u5+1(1u2)2u3=(1u2)+u2(1u2)u5+(1u2)+u2(1u2)2u3=1u5+1(1u2)u3+1(1u2)u3+1(1u2)2u=1u5+(1u2)+u2(1u2)u3+(1u2)+u2(1u2)u3+(1u2)+u2(1u2)2u=1u5+1u3+1(1u2)u+1u3+1(1u2)u+1(1u2)u+u(1u2)2=1u5+2u3+3(1u+u1u2)+u(1u2)2f(u)du=14u41u2+3lnu3ln(1u2)2+12(1u2)+C
Commented by stelor last updated on 21/Jan/21
merci  ...thank...
mercithank
Answered by MJS_new last updated on 20/Jan/21
∫(du/(u^5 (1−u^2 )^2 ))=       [Ostrogradski′s Method]  =−((6u^4 −3u^2 −1)/(4u^4 (u^2 −1)))−3∫(du/(u(u^2 −1)))=  =−((6u^4 −3u^2 −1)/(4u^4 (u^2 −1)))−(3/2)∫(du/(u−1))−(3/2)∫(du/(u+1))+3∫(du/u)=  =−((6u^4 −3u^2 −1)/(4u^4 (u^2 −1)))−(3/2)ln ∣u−1∣ −(3/2)ln ∣u+1∣ +3ln ∣u∣ =  =−((6u^4 −3u^2 −1)/(4u^4 (u^2 −1)))+(3/2)ln (u^2 /(∣u^2 −1∣)) +C
duu5(1u2)2=[OstrogradskisMethod]=6u43u214u4(u21)3duu(u21)==6u43u214u4(u21)32duu132duu+1+3duu==6u43u214u4(u21)32lnu132lnu+1+3lnu==6u43u214u4(u21)+32lnu2u21+C

Leave a Reply

Your email address will not be published. Required fields are marked *