Question Number 129921 by stelor last updated on 20/Jan/21
$$\int\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)^{\mathrm{2}} \mathrm{u}^{\mathrm{5}} }\mathrm{du}=?? \\ $$$$\mathrm{please}… \\ $$
Answered by Ar Brandon last updated on 20/Jan/21
$$\mathrm{u}=\mathrm{cos}\theta \\ $$$$\mathcal{I}=−\int\frac{\mathrm{sin}\theta\mathrm{d}\theta}{\mathrm{sin}^{\mathrm{4}} \theta\mathrm{cos}^{\mathrm{5}} \theta}=−\int\frac{\mathrm{d}\theta}{\mathrm{sin}^{\mathrm{3}} \theta\mathrm{cos}^{\mathrm{5}} \theta} \\ $$$${see}\:{Q}\mathrm{129907}\:\mathrm{for}\:\mathrm{similar}\:\mathrm{case} \\ $$
Answered by Ar Brandon last updated on 20/Jan/21
$$\mathcal{I}=\int\frac{\mathrm{du}}{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)^{\mathrm{2}} \mathrm{u}^{\mathrm{5}} } \\ $$$$\mathrm{f}\left(\mathrm{u}\right)=\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)^{\mathrm{2}} \mathrm{u}^{\mathrm{5}} }=\frac{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)+\mathrm{u}^{\mathrm{2}} }{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)^{\mathrm{2}} \mathrm{u}^{\mathrm{5}} }=\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)\mathrm{u}^{\mathrm{5}} }+\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)^{\mathrm{2}} \mathrm{u}^{\mathrm{3}} } \\ $$$$\:\:\:\:\:\:\:\:=\frac{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)+\mathrm{u}^{\mathrm{2}} }{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)\mathrm{u}^{\mathrm{5}} }+\frac{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)+\mathrm{u}^{\mathrm{2}} }{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)^{\mathrm{2}} \mathrm{u}^{\mathrm{3}} } \\ $$$$\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{u}^{\mathrm{5}} }+\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)\mathrm{u}^{\mathrm{3}} }+\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)\mathrm{u}^{\mathrm{3}} }+\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)^{\mathrm{2}} \mathrm{u}} \\ $$$$\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{u}^{\mathrm{5}} }+\frac{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)+\mathrm{u}^{\mathrm{2}} }{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)\mathrm{u}^{\mathrm{3}} }+\frac{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)+\mathrm{u}^{\mathrm{2}} }{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)\mathrm{u}^{\mathrm{3}} }+\frac{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)+\mathrm{u}^{\mathrm{2}} }{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)^{\mathrm{2}} \mathrm{u}} \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{u}^{\mathrm{5}} }+\frac{\mathrm{1}}{\mathrm{u}^{\mathrm{3}} }+\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)\mathrm{u}}+\frac{\mathrm{1}}{\mathrm{u}^{\mathrm{3}} }+\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)\mathrm{u}}+\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)\mathrm{u}}+\frac{\mathrm{u}}{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{u}^{\mathrm{5}} }+\frac{\mathrm{2}}{\mathrm{u}^{\mathrm{3}} }+\mathrm{3}\left(\frac{\mathrm{1}}{\mathrm{u}}+\frac{\mathrm{u}}{\mathrm{1}−\mathrm{u}^{\mathrm{2}} }\right)+\frac{\mathrm{u}}{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\int\mathrm{f}\left(\mathrm{u}\right)\mathrm{du}=−\frac{\mathrm{1}}{\mathrm{4u}^{\mathrm{4}} }−\frac{\mathrm{1}}{\mathrm{u}^{\mathrm{2}} }+\mathrm{3ln}\mid\mathrm{u}\mid−\frac{\mathrm{3ln}\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)}+\mathcal{C} \\ $$
Commented by stelor last updated on 21/Jan/21
$${merc}\mathrm{i}\:\:…\mathrm{thank}… \\ $$
Answered by MJS_new last updated on 20/Jan/21
$$\int\frac{{du}}{{u}^{\mathrm{5}} \left(\mathrm{1}−{u}^{\mathrm{2}} \right)^{\mathrm{2}} }= \\ $$$$\:\:\:\:\:\left[\mathrm{Ostrogradski}'\mathrm{s}\:\mathrm{Method}\right] \\ $$$$=−\frac{\mathrm{6}{u}^{\mathrm{4}} −\mathrm{3}{u}^{\mathrm{2}} −\mathrm{1}}{\mathrm{4}{u}^{\mathrm{4}} \left({u}^{\mathrm{2}} −\mathrm{1}\right)}−\mathrm{3}\int\frac{{du}}{{u}\left({u}^{\mathrm{2}} −\mathrm{1}\right)}= \\ $$$$=−\frac{\mathrm{6}{u}^{\mathrm{4}} −\mathrm{3}{u}^{\mathrm{2}} −\mathrm{1}}{\mathrm{4}{u}^{\mathrm{4}} \left({u}^{\mathrm{2}} −\mathrm{1}\right)}−\frac{\mathrm{3}}{\mathrm{2}}\int\frac{{du}}{{u}−\mathrm{1}}−\frac{\mathrm{3}}{\mathrm{2}}\int\frac{{du}}{{u}+\mathrm{1}}+\mathrm{3}\int\frac{{du}}{{u}}= \\ $$$$=−\frac{\mathrm{6}{u}^{\mathrm{4}} −\mathrm{3}{u}^{\mathrm{2}} −\mathrm{1}}{\mathrm{4}{u}^{\mathrm{4}} \left({u}^{\mathrm{2}} −\mathrm{1}\right)}−\frac{\mathrm{3}}{\mathrm{2}}\mathrm{ln}\:\mid{u}−\mathrm{1}\mid\:−\frac{\mathrm{3}}{\mathrm{2}}\mathrm{ln}\:\mid{u}+\mathrm{1}\mid\:+\mathrm{3ln}\:\mid{u}\mid\:= \\ $$$$=−\frac{\mathrm{6}{u}^{\mathrm{4}} −\mathrm{3}{u}^{\mathrm{2}} −\mathrm{1}}{\mathrm{4}{u}^{\mathrm{4}} \left({u}^{\mathrm{2}} −\mathrm{1}\right)}+\frac{\mathrm{3}}{\mathrm{2}}\mathrm{ln}\:\frac{{u}^{\mathrm{2}} }{\mid{u}^{\mathrm{2}} −\mathrm{1}\mid}\:+{C} \\ $$