Menu Close

1-1-x-2-1-x-1-2-dx-




Question Number 18396 by Joel577 last updated on 20/Jul/17
∫ (√(1 + (1/x^2 ) + (1/((x + 1)^2 ))))  dx
$$\int\:\sqrt{\mathrm{1}\:+\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\left({x}\:+\:\mathrm{1}\right)^{\mathrm{2}} }}\:\:{dx} \\ $$
Answered by b.e.h.i.8.3.417@gmail.com last updated on 20/Jul/17
1+(1/x^2 )+(1/((x+1)^2 ))=(((x^2 +x)^2 +(x+1)^2 +x^2 )/((x^2 +x)^2 ))=  =((x^4 +2x^3 +x^2 +x^2 +2x+1+x^2 )/((x^2 +x)^2 ))=  =((x^4 +2x^3 +3x^2 +2x+1)/((x^2 +x)^2 ))=(((x^2 +x+1)^2 )/((x^2 +x)^2 ))o  ⇒I=∫((x^2 +x+1)/(x^2 +x))dx=∫(1+(1/(x(x+1))))dx=  =∫(1+(1/x)−(1/(x+1)))dx=x+ln(x/(x+1))+C.
$$\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\left({x}^{\mathrm{2}} +{x}\right)^{\mathrm{2}} +\left({x}+\mathrm{1}\right)^{\mathrm{2}} +{x}^{\mathrm{2}} }{\left({x}^{\mathrm{2}} +{x}\right)^{\mathrm{2}} }= \\ $$$$=\frac{{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}+{x}^{\mathrm{2}} }{\left({x}^{\mathrm{2}} +{x}\right)^{\mathrm{2}} }= \\ $$$$=\frac{{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}}{\left({x}^{\mathrm{2}} +{x}\right)^{\mathrm{2}} }=\frac{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }{\left({x}^{\mathrm{2}} +{x}\right)^{\mathrm{2}} }{o} \\ $$$$\Rightarrow{I}=\int\frac{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{{x}^{\mathrm{2}} +{x}}{dx}=\int\left(\mathrm{1}+\frac{\mathrm{1}}{{x}\left({x}+\mathrm{1}\right)}\right){dx}= \\ $$$$=\int\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{x}+\mathrm{1}}\right){dx}={x}+{ln}\frac{{x}}{{x}+\mathrm{1}}+{C}. \\ $$
Commented by Joel577 last updated on 25/Jul/17
thank you very much
$${thank}\:{you}\:{very}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *