Menu Close

1-1-x-2-2-




Question Number 93473 by mashallah last updated on 13/May/20
∫1/(1+x^2 )^2
1/(1+x2)2
Commented by abdomathmax last updated on 15/May/20
A =∫  (dx/((1+x^2 )^2 ))  we do the changement x =tant ⇒  A  =∫   (((1+tan^2 t)dt)/((1+tan^2 t)^2 )) =∫cos^2 t dt =(1/2)∫(1+cos(2t))dt  =(t/2) +(1/4)sin(2t) +C  =((arctanx)/2) +(1/4)×((tant)/(1+tan^2 t)) +C  =((arctanx)/2) +(1/4)(x/(1+x^2 )) +C
A=dx(1+x2)2wedothechangementx=tantA=(1+tan2t)dt(1+tan2t)2=cos2tdt=12(1+cos(2t))dt=t2+14sin(2t)+C=arctanx2+14×tant1+tan2t+C=arctanx2+14x1+x2+C
Answered by Rio Michael last updated on 13/May/20
∫ (1/((1 + x^2 )^2 )) dx     changement  x = tan θ ⇒ (dx/dθ) = sec^2 θ  ⇒ ∫(1/((1+x^2 )^2 )) dx = ∫ (1/((1+tan^2 θ)^2 )) sec^2 θ dθ = ∫(1/(sec^2 θ)) dθ  ⇒ ∫ cos^2 θ dθ = (1/2) ∫ (1 +cos2θ) dθ = (1/2) ( θ + ((sin 2θ)/2)) + C
1(1+x2)2dxchangementx=tanθdxdθ=sec2θ1(1+x2)2dx=1(1+tan2θ)2sec2θdθ=1sec2θdθcos2θdθ=12(1+cos2θ)dθ=12(θ+sin2θ2)+C

Leave a Reply

Your email address will not be published. Required fields are marked *