Menu Close

1-1-x-2-lnx-dx-




Question Number 148285 by Khalmohmmad last updated on 26/Jul/21
∫_1 ^∞ (1/(x^2 lnx))dx=?
$$\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{x}^{\mathrm{2}} \mathrm{ln}{x}}{dx}=? \\ $$
Commented by ahmedNasser last updated on 26/Jul/21
let u = lnx    ∴ du = (1/x) dx    x = e^u   ∫_0 ^( ∞) (1/(e^(2u) ∙u)) ∙e^u  du  =∫_0 ^( ∞) u^(−1) e^(−u) du =Γ(0) = ∞
$${let}\:{u}\:=\:{lnx}\:\:\:\:\therefore\:{du}\:=\:\frac{\mathrm{1}}{{x}}\:{dx}\:\:\:\:{x}\:=\:{e}^{{u}} \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{1}}{{e}^{\mathrm{2}{u}} \centerdot{u}}\:\centerdot{e}^{{u}} \:{du}\:\:=\int_{\mathrm{0}} ^{\:\infty} {u}^{−\mathrm{1}} {e}^{−{u}} {du}\:=\Gamma\left(\mathrm{0}\right)\:=\:\infty \\ $$
Answered by puissant last updated on 26/Jul/21
diverge..
$${diverge}.. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *