Menu Close

1-1-x-x-2-x-3-dx-2-1-tgx-sinx-dx-3-e-x-ln-1-1-x-2-dx-4-sinx-1-sinx-sin2x-dx-




Question Number 62227 by behi83417@gmail.com last updated on 17/Jun/19
1.∫(√(1+x+x^2 +x^3   ))dx=?  2.∫   ((√(1−tgx))/(sinx))  dx=?  3.∫   e^x .ln(1+(√(1+x^2 )))dx=?  4.∫  ((sinx)/(1+sinx+sin2x)) dx=?
1.1+x+x2+x3dx=?2.1tgxsinxdx=?3.ex.ln(1+1+x2)dx=?4.sinx1+sinx+sin2xdx=?
Commented by maxmathsup by imad last updated on 19/Jun/19
4) let I =∫   ((sinx)/(1+sinx +sin(2x)))dx ⇒I = ∫    ((sinx)/(1+sinx +2sinx cosx))dx  = ∫      (dx/((1/(sinx))+1 +2cosx)) dx =_(tan((x/2))=t)       ∫     (1/(((1+t^2 )/(2t)) +1+2((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 ))  = ∫     ((2dt)/((((1+t^2 )^2 )/(2t)) +1+t^2  +2−2t^2 )) dt =∫   ((2dt)/((((1+t^2 )^2 )/(2t)) +3−t^2 ))  = ∫    ((4t dt)/((1+t^2 )^2  +6t−2t^3 )) = ∫   ((4tdt)/(t^4  +2t^2  +1+6t−2t^3 ))  =∫   ((4tdt)/(t^4 −2t^3  +2t^2  +6t+1))  let decompose F(t) =((4t)/(t^4 −2t^3  +2t^2  +6t +1))  the roots of P(x) =t^4 −2t^3  +2t^2  +6t +1 are t_1 =−1  ,t_2 ∼−0,1795  t_3 ∼1,5898 +1,7445i  (complex)  t_4 ∼ 1,5898+1,7445i (complex) ⇒  F(t) =((4t)/((t+1)(t−t_2 )(t−t_3 )(t−t_3 ^− ))) =((4t)/((t+1)(t−t_2 )(t^2 −(t_3 +t_3 ^− )t +∣t_3 ∣^2 )))  ⇒F(t) =(a/(t+1)) +(b/(t−t_2 )) +((ct +d)/(t^2 −αt +β))        (α =t_3 +t_3 ^−   and β =∣t_3 ∣^2 ) ⇒  ∫ F(t)dt =aln∣t+1∣ +bln∣t−t_2 ∣  +(c/2) ∫  ((2t−α +α)/(t^2 −αt +β)) + ∫  (d/(t^2 −αt +β)) dt  =aln∣t+1∣ +bln∣t−t_2 ∣ +(c/2)ln∣t^2 −αt +β∣  +(((αc)/2) +d) ∫   (dt/(t^2 −αt +β))  ∫  (dt/(t^2 −αt +β)) =∫   (dt/(t^2 −2t(α/2) +β −(α^2 /4))) =∫     (dt/((t−(α/2))^2  +((4β−α^2 )/4)))  =_(t−(α/2)=((√(4β−α^2 ))/2) u)    (1/2)∫      (1/(((4β−α^2 )/4)(1+u^2 ))) (√(4β−α^2 ))du =(2/( (√(4β−α^2 )))) arctan(u)  +C  =(2/( (√(4β−α^2 )))) arctan(((2t−α)/( (√(4β^2 −α^2 ))))) ⇒  I =a ln∣1+tan((x/2))∣+bln∣tan((x/2))−t_2 ∣ +(c/2)ln∣tan^2 ((x/2))−αtan((x/2))+β∣  +(((αc)/2) +d) (2/( (√(4β−α^2 )))) arctan(((2tan((x/2)))/( (√(4β−α^2 ))))) +C  rest to calculate the value of  a ,b,c and d ....
4)letI=sinx1+sinx+sin(2x)dxI=sinx1+sinx+2sinxcosxdx=dx1sinx+1+2cosxdx=tan(x2)=t11+t22t+1+21t21+t22dt1+t2=2dt(1+t2)22t+1+t2+22t2dt=2dt(1+t2)22t+3t2=4tdt(1+t2)2+6t2t3=4tdtt4+2t2+1+6t2t3=4tdtt42t3+2t2+6t+1letdecomposeF(t)=4tt42t3+2t2+6t+1therootsofP(x)=t42t3+2t2+6t+1aret1=1,t20,1795t31,5898+1,7445i(complex)t41,5898+1,7445i(complex)F(t)=4t(t+1)(tt2)(tt3)(tt3)=4t(t+1)(tt2)(t2(t3+t3)t+t32)F(t)=at+1+btt2+ct+dt2αt+β(α=t3+t3andβ=∣t32)F(t)dt=alnt+1+blntt2+c22tα+αt2αt+β+dt2αt+βdt=alnt+1+blntt2+c2lnt2αt+β+(αc2+d)dtt2αt+βdtt2αt+β=dtt22tα2+βα24=dt(tα2)2+4βα24=tα2=4βα22u1214βα24(1+u2)4βα2du=24βα2arctan(u)+C=24βα2arctan(2tα4β2α2)I=aln1+tan(x2)+blntan(x2)t2+c2lntan2(x2)αtan(x2)+β+(αc2+d)24βα2arctan(2tan(x2)4βα2)+Cresttocalculatethevalueofa,b,candd.
Commented by behi83417@gmail.com last updated on 20/Jun/19
thanks in advance master proph. abdo!  nice and hard work.
thanksinadvancemasterproph.abdo!niceandhardwork.
Commented by prof Abdo imad last updated on 20/Jun/19
you are welcome sir.
youarewelcomesir.

Leave a Reply

Your email address will not be published. Required fields are marked *