Menu Close

1-1-xdx-x-2-1-2-




Question Number 26486 by A1B1C1D1 last updated on 26/Dec/17
∫_( −1) ^(  1) ((xdx)/((x^2  + 1)^2 ))
11xdx(x2+1)2
Commented by kaivan.ahmadi last updated on 26/Dec/17
u=x^2 +1⇒du=2xdx  ⇒(1/2)∫(du/u^2 )=1/2(−(1/u))=−1/2((1/(x^2 +1)))∣_(−1) ^1 =  −1/2((1/2)−(1/2))=0
u=x2+1du=2xdx12duu2=1/2(1u)=1/2(1x2+1)11=1/2(1212)=0
Commented by A1B1C1D1 last updated on 26/Dec/17
Thanks.
Thanks.
Commented by mrW1 last updated on 26/Dec/17
for any f(x):  if f(−x)=−f(x)  ∫_(−a) ^(  a) f(x)dx=∫_(−a) ^( 0) f(x)dx+∫_0 ^( a) f(x)dx  =−∫_0 ^( a) f(x)dx+∫_0 ^( a) f(x)dx  =0
foranyf(x):iff(x)=f(x)aaf(x)dx=a0f(x)dx+0af(x)dx=0af(x)dx+0af(x)dx=0
Commented by A1B1C1D1 last updated on 26/Dec/17
Thanks
Thanks
Commented by abdo imad last updated on 26/Dec/17
in general if f is integrable and odd(f(−x)=−f(x))  on [−a,a]⇒∫_(−a) ^a f(x)dx=0
ingeneraliffisintegrableandodd(f(x)=f(x))on[a,a]aaf(x)dx=0
Answered by jota@ last updated on 26/Dec/17
=0. The  function is impar.
=0.Thefunctionisimpar.

Leave a Reply

Your email address will not be published. Required fields are marked *