Menu Close

1-13-e-2pi-1-2-13-e-4pi-1-3-13-e-6pi-1-




Question Number 121739 by Dwaipayan Shikari last updated on 11/Nov/20
(1^(13) /(e^(2π) −1))+(2^(13) /(e^(4π) −1))+(3^(13) /(e^(6π) −1))+....
113e2π1+213e4π1+313e6π1+.
Answered by mindispower last updated on 13/Nov/20
f(z)=(z^(13) /(e^(2πz) −1))→0,z→0,f^∗ (z)= { ((f(z),z≠0)),((0   z=0)) :}  Σ_(n≥1) f(n)=Σ_(n≥0) f^∗ (n)  abel plana formula  Σ_(n≥0) f^∗ (n)=∫_0 ^∞ f(z)dz+((f(0))/2)+i∫_0 ^∞ ((f(it)−f(−it))/(e^(2πt) −1))dt  =∫_0 ^∞ (z^(13) /(e^(2πz) −1))dz+i∫_0 ^∞ 2iIm(f(it)).(dt/(e^(2πt) −1))  ((it^(13) )/(e^(2iπt) −1))+((it^(13) )/(e^(−2iπt) −1))=f(it)−f(−it)=((it^(13) )/(e^(2πt) −1))(1−e^(2πit) )=−it^(13)   =2∫_0 ^∞ (z^(13) /(e^(2πz) −1))dz  2πz=t⇒dz=(dt/(2π)),=2∫_0 ^∞ ((t/(2π)))^(13) .(dt/(2π(e^t −1)))  =(1/(π^(14) .2^(13) ))∫_0 ^∞ (t^(13) /(e^t −1))dt=S  ∫_0 ^∞ (t^s /(e^t −1))dt=Σ_(n≥0) ∫_0 ^∞ t^s e^(−(1+n)t) dt=Σ_(n≥0) Γ(s+1)(1/((n+1)^(s+1) ))  =Γ(s+1)ζ(s+1)  S=(1/(π^(14) 2^(13) ))ζ(14)Γ(14)=(1/(π^(14) .2^(13) )).((2π^(14) )/(18243225)).(13)!  =(1/2^(12) ).(((13)!)/(25.13.7.9^3 .11))=(1/2^(12) ).(12.10.8.6.4.3.2).(1/(5.9^2 )))  =(1/2^(12) )(3.2.2.5.2^3 .2.3.2^3 .3).(1/(5.3^4 ))=(1/2^(12) ).(2^9 ).(1/3)=(1/(8.3))  =(1/(24))  Σ_(n≥1) (n^(13) /(e^(2πn) −1))=(1/(24)) I tried many ways to  get it
f(z)=z13e2πz10,z0,f(z)={f(z),z00z=0n1f(n)=n0f(n)abelplanaformulan0f(n)=0f(z)dz+f(0)2+i0f(it)f(it)e2πt1dt=0z13e2πz1dz+i02iIm(f(it)).dte2πt1it13e2iπt1+it13e2iπt1=f(it)f(it)=it13e2πt1(1e2πit)=it13=20z13e2πz1dz2πz=tdz=dt2π,=20(t2π)13.dt2π(et1)=1π14.2130t13et1dt=S0tset1dt=n00tse(1+n)tdt=n0Γ(s+1)1(n+1)s+1=Γ(s+1)ζ(s+1)S=1π14213ζ(14)Γ(14)=1π14.213.2π1418243225.(13)!=1212.(13)!25.13.7.93.11=1212.(12.10.8.6.4.3.2).15.92)=1212(3.2.2.5.23.2.3.23.3).15.34=1212.(29).13=18.3=124n1n13e2πn1=124Itriedmanywaystogetit
Commented by Dwaipayan Shikari last updated on 14/Nov/20
Great sir! Thanking you
Greatsir!Thankingyou

Leave a Reply

Your email address will not be published. Required fields are marked *