1-13-e-2pi-1-2-13-e-4pi-1-3-13-e-6pi-1- Tinku Tara June 4, 2023 Others 0 Comments FacebookTweetPin Question Number 121739 by Dwaipayan Shikari last updated on 11/Nov/20 113e2π−1+213e4π−1+313e6π−1+…. Answered by mindispower last updated on 13/Nov/20 f(z)=z13e2πz−1→0,z→0,f∗(z)={f(z),z≠00z=0∑n⩾1f(n)=∑n⩾0f∗(n)abelplanaformula∑n⩾0f∗(n)=∫0∞f(z)dz+f(0)2+i∫0∞f(it)−f(−it)e2πt−1dt=∫0∞z13e2πz−1dz+i∫0∞2iIm(f(it)).dte2πt−1it13e2iπt−1+it13e−2iπt−1=f(it)−f(−it)=it13e2πt−1(1−e2πit)=−it13=2∫0∞z13e2πz−1dz2πz=t⇒dz=dt2π,=2∫0∞(t2π)13.dt2π(et−1)=1π14.213∫0∞t13et−1dt=S∫0∞tset−1dt=∑n⩾0∫0∞tse−(1+n)tdt=∑n⩾0Γ(s+1)1(n+1)s+1=Γ(s+1)ζ(s+1)S=1π14213ζ(14)Γ(14)=1π14.213.2π1418243225.(13)!=1212.(13)!25.13.7.93.11=1212.(12.10.8.6.4.3.2).15.92)=1212(3.2.2.5.23.2.3.23.3).15.34=1212.(29).13=18.3=124∑n⩾1n13e2πn−1=124Itriedmanywaystogetit Commented by Dwaipayan Shikari last updated on 14/Nov/20 Greatsir!Thankingyou Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lim-x-0-x-2-tan-1-x-3-0-x-sin-t-2-dt-x-5-Next Next post: find-or-prove-it-can-t-exist-a-f-R-R-diferentiable-such-that-a-a-f-x-dx-0-a-R-gt-0-df-dx-0-x-R- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.