Menu Close

1-2-0-pi-y-sin-xy-dy-dx-




Question Number 160191 by mkam last updated on 25/Nov/21
∫_1 ^( 2)  ∫_0 ^( π)  y sin(xy) dy dx
$$\int_{\mathrm{1}} ^{\:\mathrm{2}} \:\int_{\mathrm{0}} ^{\:\pi} \:{y}\:{sin}\left({xy}\right)\:{dy}\:{dx} \\ $$
Answered by mr W last updated on 25/Nov/21
generally  ∫_a ^b ∫_c ^d F(x,y)dydx=∫_c ^d ∫_a ^b F(x,y)dxdy  with a,b,c,d=constants    ∫_1 ^( 2)  ∫_0 ^( π)  y sin(xy) dy dx  =∫_0 ^π  ∫_1 ^( 2)  y sin(yx) dx dy  =∫_0 ^^π  [ −cos (xy)]_1 ^2  dy  =∫_0 ^^π  [ cos (y)−cos (2y)] dy  =[sin (y)−((sin (2y))/2)]_0 ^π   =0
$${generally} \\ $$$$\int_{{a}} ^{{b}} \int_{{c}} ^{{d}} {F}\left({x},{y}\right){dydx}=\int_{{c}} ^{{d}} \int_{{a}} ^{{b}} {F}\left({x},{y}\right){dxdy} \\ $$$${with}\:{a},{b},{c},{d}={constants} \\ $$$$ \\ $$$$\int_{\mathrm{1}} ^{\:\mathrm{2}} \:\int_{\mathrm{0}} ^{\:\pi} \:{y}\:{sin}\left({xy}\right)\:{dy}\:{dx} \\ $$$$=\int_{\mathrm{0}} ^{\pi} \:\int_{\mathrm{1}} ^{\:\mathrm{2}} \:{y}\:{sin}\left({yx}\right)\:{dx}\:{dy} \\ $$$$=\int_{\mathrm{0}} ^{\:^{\pi} } \left[\:−\mathrm{cos}\:\left({xy}\right)\right]_{\mathrm{1}} ^{\mathrm{2}} \:{dy} \\ $$$$=\int_{\mathrm{0}} ^{\:^{\pi} } \left[\:\mathrm{cos}\:\left({y}\right)−\mathrm{cos}\:\left(\mathrm{2}{y}\right)\right]\:{dy} \\ $$$$=\left[\mathrm{sin}\:\left({y}\right)−\frac{\mathrm{sin}\:\left(\mathrm{2}{y}\right)}{\mathrm{2}}\right]_{\mathrm{0}} ^{\pi} \\ $$$$=\mathrm{0} \\ $$
Commented by mr W last updated on 26/Nov/21
or (not so good way)  ∫_1 ^( 2)  ∫_0 ^( π)  y sin(xy) dy dx  =∫_1 ^( 2) {−(1/x) ∫_0 ^( π)  y d[cos (xy)]}dx  =∫_1 ^( 2) (1/x){−[ycos (xy)]_0 ^π +∫_0 ^( π)  cos (xy)dy }dx  =∫_1 ^( 2) (1/x){−[ycos (xy)]_0 ^π +[((sin (xy))/x)]_0 ^π }dx  =∫_1 ^( 2) (1/x){−πcos (xπ)+((sin (xπ))/x)}dx  =∫_1 ^( 2) {−((πcos (πx))/x)+((sin (πx))/x^2 )}dx  =∫_1 ^( 2) d(−((sin (πx))/x))  =[−((sin (πx))/x)]_1 ^2   =((sin π)/1)−((sin 2π)/2)  =0
$${or}\:\left({not}\:{so}\:{good}\:{way}\right) \\ $$$$\int_{\mathrm{1}} ^{\:\mathrm{2}} \:\int_{\mathrm{0}} ^{\:\pi} \:{y}\:{sin}\left({xy}\right)\:{dy}\:{dx} \\ $$$$=\int_{\mathrm{1}} ^{\:\mathrm{2}} \left\{−\frac{\mathrm{1}}{{x}}\:\int_{\mathrm{0}} ^{\:\pi} \:{y}\:{d}\left[\mathrm{cos}\:\left({xy}\right)\right]\right\}{dx} \\ $$$$=\int_{\mathrm{1}} ^{\:\mathrm{2}} \frac{\mathrm{1}}{{x}}\left\{−\left[{y}\mathrm{cos}\:\left({xy}\right)\right]_{\mathrm{0}} ^{\pi} +\int_{\mathrm{0}} ^{\:\pi} \:\mathrm{cos}\:\left({xy}\right){dy}\:\right\}{dx} \\ $$$$=\int_{\mathrm{1}} ^{\:\mathrm{2}} \frac{\mathrm{1}}{{x}}\left\{−\left[{y}\mathrm{cos}\:\left({xy}\right)\right]_{\mathrm{0}} ^{\pi} +\left[\frac{\mathrm{sin}\:\left({xy}\right)}{{x}}\right]_{\mathrm{0}} ^{\pi} \right\}{dx} \\ $$$$=\int_{\mathrm{1}} ^{\:\mathrm{2}} \frac{\mathrm{1}}{{x}}\left\{−\pi\mathrm{cos}\:\left({x}\pi\right)+\frac{\mathrm{sin}\:\left({x}\pi\right)}{{x}}\right\}{dx} \\ $$$$=\int_{\mathrm{1}} ^{\:\mathrm{2}} \left\{−\frac{\pi\mathrm{cos}\:\left(\pi{x}\right)}{{x}}+\frac{\mathrm{sin}\:\left(\pi{x}\right)}{{x}^{\mathrm{2}} }\right\}{dx} \\ $$$$=\int_{\mathrm{1}} ^{\:\mathrm{2}} {d}\left(−\frac{\mathrm{sin}\:\left(\pi{x}\right)}{{x}}\right) \\ $$$$=\left[−\frac{\mathrm{sin}\:\left(\pi{x}\right)}{{x}}\right]_{\mathrm{1}} ^{\mathrm{2}} \\ $$$$=\frac{\mathrm{sin}\:\pi}{\mathrm{1}}−\frac{\mathrm{sin}\:\mathrm{2}\pi}{\mathrm{2}} \\ $$$$=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *