Menu Close

1-2-1-2-x-1-x-1-2-x-1-x-1-2-2-1-2-dx-




Question Number 53294 by gunawan last updated on 20/Jan/19
∫_(−1/2) ^(1/2) [(((x+1)/(x−1)))^2 +(((x−1)/(x+1)))^2 −2]^(1/2) dx=...
1/21/2[(x+1x1)2+(x1x+1)22]1/2dx=
Answered by tanmay.chaudhury50@gmail.com last updated on 20/Jan/19
f(x)=[(((x+1)/(x−1)))^2 +(((x−1)/(x+1)))^2 −2]^(1/2)   =[{(((x+1)/(x−1)))−(((x−1)/(x+1)))}^2 ]^(1/2)   =(((x+1)^2 −(x−1)^2 )/((x^2 −1)))  =((4x)/(x^2 −1))  ∫_((−1)/2) ^(1/2)  ((4x)/(x^2 −1))dx←look here f(−x)=((−4x)/(x^2 −1))=−f(x)  so  ∫_((−1)/2) ^(1/2)  ((4x)/(x^2 −1))=0  if we clculate..  2∫_((−1)/2) ^(1/2)  ((d(x^2 −1))/(x^2 −1))     2×∣ln(x^2 −1)∣_((−1)/2) ^(1/2)   2[ln∣((1/4)−1)∣−ln∣((1/4)−1)∣]=0
f(x)=[(x+1x1)2+(x1x+1)22]12=[{(x+1x1)(x1x+1)}2]12=(x+1)2(x1)2(x21)=4xx2112124xx21dxlookheref(x)=4xx21=f(x)so12124xx21=0ifweclculate..21212d(x21)x212×ln(x21)12122[ln(141)ln(141)]=0

Leave a Reply

Your email address will not be published. Required fields are marked *