Menu Close

1-2-1-2-x-2-1-x-4-x-2-1-dx-




Question Number 192712 by cortano12 last updated on 25/May/23
    ∫_(−1/2) ^(1/2)  (√(x^2 +1+(√(x^4 +x^2 +1)))) dx =?
1/21/2x2+1+x4+x2+1dx=?
Answered by horsebrand11 last updated on 25/May/23
I=2∫_0 ^(1/2)  (√(x^2 +1+(√((x^2 +x+1)(x^2 −x+1))))) dx   = (√2) ∫_0 ^(1/2) (√(((√(x^2 +x+1)))+(√(x^2 −x+1)) )^2 )) dx   = (√2) ∫_0 ^(1/2) ((√(x^2 +x+1)) +(√(x^2 −x+1)) )dx  =(1/( (√2) ))(∫_0 ^(1/2)  (√((2x+1)^2 +3)) dx +∫_(−1/2) ^0 (√((2x+1)^2 +3)) dx)  = (1/( (√2))) ∫_(−1/2) ^(1/2)  (√((2x+1)^2 +3)) dx    let 2x+1=(√3) tan α   I= (3/(2(√2))) ∫_0 ^(arctan (2/(√(3)))) sec^3 α dα   = (3/(4(√2))) (sec α tan α +ln (sec α+tan α) ]_0 ^(arctan ((2/( (√3)))))   =2(√7) +3ln (((2+(√7))/( (√3))))
I=21/20x2+1+(x2+x+1)(x2x+1)dx=21/20(x2+x+1)+x2x+1)2dx=21/20(x2+x+1+x2x+1)dx=12(1/20(2x+1)2+3dx+01/2(2x+1)2+3dx)=121/21/2(2x+1)2+3dxlet2x+1=3tanαI=322arctan(2/3)0sec3αdα=342(secαtanα+ln(secα+tanα)]0arctan(23)=27+3ln(2+73)

Leave a Reply

Your email address will not be published. Required fields are marked *