Question Number 123807 by Dwaipayan Shikari last updated on 28/Nov/20
$$\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)!\left(\mathrm{1}\right)!}{\left(\frac{\mathrm{5}}{\mathrm{2}}\right)!}−\frac{\left(\frac{\mathrm{3}}{\mathrm{2}}\right)!\left(\mathrm{2}\right)!}{\left(\frac{\mathrm{9}}{\mathrm{2}}\right)!}+\frac{\left(\frac{\mathrm{5}}{\mathrm{2}}\right)!\mathrm{3}!}{\left(\frac{\mathrm{13}}{\mathrm{2}}\right)!}−\frac{\left(\frac{\mathrm{7}}{\mathrm{2}}\right)!\mathrm{4}!}{\left(\frac{\mathrm{17}}{\mathrm{2}}\right)!}+…. \\ $$
Commented by Dwaipayan Shikari last updated on 28/Nov/20
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \frac{\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left({n}+\mathrm{1}\right)}{\Gamma\left(\mathrm{2}{n}+\frac{\mathrm{3}}{\mathrm{2}}\right)} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \beta\left({n}+\frac{\mathrm{1}}{\mathrm{2}},{n}+\mathrm{1}\right) \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {x}^{{n}−\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{1}−{x}\right)^{{n}} {dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{{x}}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {x}^{{n}} \left(\mathrm{1}−{x}\right)^{{n}} {dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{{x}}}.\frac{\mathrm{1}}{\mathrm{1}+{x}\left(\mathrm{1}−{x}\right)}{dx}\:\:\:\:\:\:\:\:\:\:{x}={t}^{\mathrm{2}} \Rightarrow\mathrm{1}=\mathrm{2}{t}\frac{{dt}}{{dx}} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} −{t}^{\mathrm{4}} }{dx}\:=−\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{t}^{\mathrm{4}} −{t}^{\mathrm{2}} −\mathrm{1}}{dt} \\ $$$$=−\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{t}^{\mathrm{2}} −\left(\sqrt{\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}}\right)^{\mathrm{2}} }+\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{t}^{\mathrm{2}} −\left(\sqrt{\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}}}{log}\left(\frac{{t}−\sqrt{\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}}}{{t}+\sqrt{\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}}}\right)−\frac{\mathrm{2}}{\:\sqrt{\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}}}{log}\left(\frac{{t}−\sqrt{\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}}}{{t}+\sqrt{\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}}}\right) \\ $$$$ \\ $$