Menu Close

1-2-2-3-3-4-99-100-




Question Number 178912 by mr W last updated on 22/Oct/22
1×2+2×3+3×4+...+99×100=?
$$\mathrm{1}×\mathrm{2}+\mathrm{2}×\mathrm{3}+\mathrm{3}×\mathrm{4}+…+\mathrm{99}×\mathrm{100}=? \\ $$
Answered by Rasheed.Sindhi last updated on 22/Oct/22
S_n =Σ_(k=1) ^(n) k(k+1)      =Σ_(k=1) ^(n) (k^2 +k)      =Σ_(k=1) ^(n) k^2 +Σ_(k=1) ^(n) k     =((n(n+1)(2n+1))/6)+((n(n+1))/2)     =((n(n+1)(2n+1)+3n(n+1))/6)     =((n(n+1)(2n+4))/6)=((n(n+1)(n+2))/3)  S_(99) =((99(99+1)(99+2))/3)=333300
$$\mathrm{S}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\Sigma}}{k}\left({k}+\mathrm{1}\right) \\ $$$$\:\:\:\:=\underset{{k}=\mathrm{1}} {\overset{{n}} {\Sigma}}\left({k}^{\mathrm{2}} +{k}\right) \\ $$$$\:\:\:\:=\underset{{k}=\mathrm{1}} {\overset{{n}} {\Sigma}}{k}^{\mathrm{2}} +\underset{{k}=\mathrm{1}} {\overset{{n}} {\Sigma}}{k} \\ $$$$\:\:\:=\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}}+\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\:\:\:=\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)+\mathrm{3}{n}\left({n}+\mathrm{1}\right)}{\mathrm{6}} \\ $$$$\:\:\:=\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{4}\right)}{\mathrm{6}}=\frac{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}{\mathrm{3}} \\ $$$$\mathrm{S}_{\mathrm{99}} =\frac{\mathrm{99}\left(\mathrm{99}+\mathrm{1}\right)\left(\mathrm{99}+\mathrm{2}\right)}{\mathrm{3}}=\mathrm{333300} \\ $$
Commented by mr W last updated on 22/Oct/22
yes, thanks!
$${yes},\:{thanks}! \\ $$
Commented by mr W last updated on 22/Oct/22
or  S_n =Σ_(k=1) ^n k(k+1)  S_n =(1/3)Σ_(k=1) ^n k(k+1)(k+2−(k−1))  S_n =(1/3)Σ_(k=1) ^n [k(k+1)(k+2)−(k−1)k(k+1)]  S_n =(1/3)[n(n+1)(n+2)−(1−1)1(2+1)]  S_n =(1/3)n(n+1)(n+2)
$${or} \\ $$$${S}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}\left({k}+\mathrm{1}\right) \\ $$$${S}_{{n}} =\frac{\mathrm{1}}{\mathrm{3}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}\left({k}+\mathrm{1}\right)\left({k}+\mathrm{2}−\left({k}−\mathrm{1}\right)\right) \\ $$$${S}_{{n}} =\frac{\mathrm{1}}{\mathrm{3}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left[{k}\left({k}+\mathrm{1}\right)\left({k}+\mathrm{2}\right)−\left({k}−\mathrm{1}\right){k}\left({k}+\mathrm{1}\right)\right] \\ $$$${S}_{{n}} =\frac{\mathrm{1}}{\mathrm{3}}\left[{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)−\left(\mathrm{1}−\mathrm{1}\right)\mathrm{1}\left(\mathrm{2}+\mathrm{1}\right)\right] \\ $$$${S}_{{n}} =\frac{\mathrm{1}}{\mathrm{3}}{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right) \\ $$
Commented by Rasheed.Sindhi last updated on 23/Oct/22
Grateful sir!
$$\mathbb{G}\boldsymbol{\mathrm{rateful}}\:\boldsymbol{\mathrm{sir}}! \\ $$
Commented by Tawa11 last updated on 23/Oct/22
Great sir
$$\mathrm{Great}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *