Menu Close

1-2-3-3-4-5-5-6-7-find-determinant-of-given-matrix-




Question Number 41305 by sameer12 last updated on 05/Aug/18
 [(1,2,3),(3,4,5),(5,6,7) ]  find determinant of given matrix?
$$\begin{bmatrix}{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}\\{\mathrm{3}}&{\mathrm{4}}&{\mathrm{5}}\\{\mathrm{5}}&{\mathrm{6}}&{\mathrm{7}}\end{bmatrix} \\ $$$${find}\:{determinant}\:{of}\:{given}\:{matrix}? \\ $$
Commented by MrW3 last updated on 05/Aug/18
row 3 −row 2:   [(1,2,3),(3,4,5),(2,2,2) ]  row 2−row 1:   [(1,2,3),(1,1,1),(2,2,2) ]  row 3−2×row 2:   [(1,2,3),(1,1,1),(0,0,0) ]  ⇒determinant =0
$${row}\:\mathrm{3}\:−{row}\:\mathrm{2}: \\ $$$$\begin{bmatrix}{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}\\{\mathrm{3}}&{\mathrm{4}}&{\mathrm{5}}\\{\mathrm{2}}&{\mathrm{2}}&{\mathrm{2}}\end{bmatrix} \\ $$$${row}\:\mathrm{2}−{row}\:\mathrm{1}: \\ $$$$\begin{bmatrix}{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{2}}&{\mathrm{2}}&{\mathrm{2}}\end{bmatrix} \\ $$$${row}\:\mathrm{3}−\mathrm{2}×{row}\:\mathrm{2}: \\ $$$$\begin{bmatrix}{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}\end{bmatrix} \\ $$$$\Rightarrow{determinant}\:=\mathrm{0} \\ $$
Answered by malwaan last updated on 05/Aug/18
(1×4×7+2×5×5+3×3×6)−  (3×4×5+2×3×7+5×6×1)  =(28+50+54)−(60+42+30)  =132−132=0
$$\left(\mathrm{1}×\mathrm{4}×\mathrm{7}+\mathrm{2}×\mathrm{5}×\mathrm{5}+\mathrm{3}×\mathrm{3}×\mathrm{6}\right)− \\ $$$$\left(\mathrm{3}×\mathrm{4}×\mathrm{5}+\mathrm{2}×\mathrm{3}×\mathrm{7}+\mathrm{5}×\mathrm{6}×\mathrm{1}\right) \\ $$$$=\left(\mathrm{28}+\mathrm{50}+\mathrm{54}\right)−\left(\mathrm{60}+\mathrm{42}+\mathrm{30}\right) \\ $$$$=\mathrm{132}−\mathrm{132}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *