Question Number 128112 by AgnibhoMukhopadhyay last updated on 04/Jan/21
$$\:\mathrm{1}\:+\:\mathrm{2}\:+\:\mathrm{3}\:+\:\mathrm{4}\:+\:…..\:+\:\mathrm{100}\:=\:? \\ $$
Answered by Olaf last updated on 04/Jan/21
$$\mathrm{A}\:\left({n}+\mathrm{1}\right)×\left({n}+\mathrm{1}\right)\:\mathrm{squared}\:\mathrm{chess}\:\mathrm{board} \\ $$$$\mathrm{contains}\:\left({n}+\mathrm{1}\right)^{\mathrm{2}} \:\mathrm{squares}. \\ $$$$ \\ $$$$\mathrm{and}\:: \\ $$$$ \\ $$$$−\mathrm{Its}\:\mathrm{diagonal}\:\mathrm{contains}\:{n}+\mathrm{1}\:\mathrm{squares} \\ $$$$−\mathrm{Its}\:\mathrm{upper}\:\mathrm{part}\:\mathrm{contains}\:{n}+\left({n}−\mathrm{1}\right)+ \\ $$$$\left({n}−\mathrm{2}\right)+…+\mathrm{3}+\mathrm{2}+\mathrm{1}\:=\:\mathrm{S}_{{n}} \:\mathrm{squares} \\ $$$$−\mathrm{Its}\:\mathrm{lower}\:\mathrm{part}\:\mathrm{contains}\:\mathrm{1}+\mathrm{2}+\mathrm{3}+…+ \\ $$$$\left({n}−\mathrm{2}\right)+\left({n}−\mathrm{1}\right)+{n}\:=\:\mathrm{S}_{{n}} \:\mathrm{squares} \\ $$$$ \\ $$$$\Rightarrow\:\left({n}+\mathrm{1}\right)^{\mathrm{2}} \:=\:\left({n}+\mathrm{1}\right)+\mathrm{2S}_{{n}} \\ $$$$\Rightarrow\:\mathrm{S}_{{n}} \:=\:\frac{\left({n}+\mathrm{1}\right)^{\mathrm{2}} −\left({n}+\mathrm{1}\right)}{\mathrm{2}}\:=\:\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$
Answered by Ar Brandon last updated on 04/Jan/21
$$\mathrm{S}_{\mathrm{100}} =\frac{\mathrm{100}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{100}\right)=\mathrm{50}×\mathrm{101}=\mathrm{5050} \\ $$
Answered by Geovanek last updated on 04/Jan/21
$$\mathrm{1}\:+\:\mathrm{2}\:+\:\mathrm{3}\:+\:\mathrm{4}\:+\:…..\:+\:\mathrm{100}\:=\:{x} \\ $$$$\mathrm{100}\:+\:\mathrm{99}\:+\:\mathrm{98}\:+\:\mathrm{97}\:+\:…..\:+\:\mathrm{1}\:=\:{x} \\ $$$$\mathrm{101}\:+\:\mathrm{101}\:+\:\mathrm{101}\:+\:\mathrm{101}\:+\:…..\:+\:\mathrm{101}\:=\:\mathrm{2}{x} \\ $$$$\mathrm{101}\:\centerdot\:\mathrm{100}\:=\:\mathrm{2}{x} \\ $$$$\frac{\mathrm{101}\:\centerdot\:\mathrm{100}}{\mathrm{2}}\:=\:{x} \\ $$$$\mathrm{101}\:\centerdot\:\mathrm{50}\:=\:{x} \\ $$$$\mathrm{5050}\:=\:{x} \\ $$$$\mathrm{So},\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{1}\:+\:\mathrm{2}\:+\:\mathrm{3}\:+\:\mathrm{4}\:+\:…..\:+\:\mathrm{100}\:=\:\mathrm{5050} \\ $$