Menu Close

1-2-3-4-5-




Question Number 100947 by bachamohamed last updated on 29/Jun/20
(√(1+(√(2+(√(3+(√(4+(√(5+.....∞))))))))))=?
$$\sqrt{\mathrm{1}+\sqrt{\mathrm{2}+\sqrt{\mathrm{3}+\sqrt{\mathrm{4}+\sqrt{\mathrm{5}+…..\infty}}}}}=? \\ $$
Commented by bachamohamed last updated on 29/Jun/20
way how ? solve that
$$\mathrm{way}\:\mathrm{how}\:?\:\mathrm{solve}\:\mathrm{that} \\ $$
Commented by Dwaipayan Shikari last updated on 29/Jun/20
suppose it has n terms  so  n×(√((1/n^2 )+(√((2/n^4 )+(√((3/n^8 )+.....∞))))))=p  {suppose}  n×(√(z+(√(z+(√(z+(√(z+...))))))))∞=p  z→0  take (√(z+(√(z+(√(z+..))))))∞=a      z+a=a^2      or  a^2 −a=0   {As z→0}      a=1  or   0      na=p  when  a=0  then n×0=undefined {as n→∞)  when a=1       then  n×1=p→∞      But it shows infinity
$${suppose}\:{it}\:{has}\:{n}\:{terms} \\ $$$${so} \\ $$$${n}×\sqrt{\frac{\mathrm{1}}{{n}^{\mathrm{2}} }+\sqrt{\frac{\mathrm{2}}{{n}^{\mathrm{4}} }+\sqrt{\frac{\mathrm{3}}{{n}^{\mathrm{8}} }+…..\infty}}}={p}\:\:\left\{{suppose}\right\} \\ $$$${n}×\sqrt{{z}+\sqrt{{z}+\sqrt{{z}+\sqrt{{z}+…}}}}\infty={p} \\ $$$${z}\rightarrow\mathrm{0} \\ $$$${take}\:\sqrt{{z}+\sqrt{{z}+\sqrt{{z}+..}}}\infty={a} \\ $$$$\:\:\:\:{z}+{a}={a}^{\mathrm{2}} \\ $$$$\:\:\:{or}\:\:{a}^{\mathrm{2}} −{a}=\mathrm{0}\:\:\:\left\{{As}\:{z}\rightarrow\mathrm{0}\right\} \\ $$$$\:\:\:\:{a}=\mathrm{1}\:\:{or}\:\:\:\mathrm{0} \\ $$$$\:\:\:\:{na}={p} \\ $$$${when}\:\:{a}=\mathrm{0}\:\:{then}\:{n}×\mathrm{0}={undefined}\:\left\{{as}\:{n}\rightarrow\infty\right) \\ $$$${when}\:{a}=\mathrm{1}\:\:\:\:\:\:\:{then}\:\:{n}×\mathrm{1}={p}\rightarrow\infty \\ $$$$ \\ $$$$ \\ $$$${But}\:{it}\:{shows}\:{infinity} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *