Menu Close

1-2-3-n-N-n-




Question Number 148154 by mathdanisur last updated on 25/Jul/21
(√(1! + 2! + 3! + ... + n!))  ∈ N  n = ?
$$\sqrt{\mathrm{1}!\:+\:\mathrm{2}!\:+\:\mathrm{3}!\:+\:…\:+\:\boldsymbol{{n}}!}\:\:\in\:\mathbb{N} \\ $$$$\boldsymbol{{n}}\:=\:? \\ $$
Answered by puissant last updated on 25/Jul/21
n=1
$$\mathrm{n}=\mathrm{1} \\ $$
Commented by Olaf_Thorendsen last updated on 25/Jul/21
and n = 3
$$\mathrm{and}\:{n}\:=\:\mathrm{3} \\ $$
Commented by mathdanisur last updated on 25/Jul/21
Yes Ser, but how
$${Yes}\:{Ser},\:{but}\:{how} \\ $$
Commented by ajfour last updated on 25/Jul/21
yes sir, truly, how?
$${yes}\:{sir},\:{truly},\:{how}? \\ $$
Answered by mindispower last updated on 25/Jul/21
Let n∈N suche  Σ_(k=1) ^n k!=m^2   for n=1,n=3 we get solution  ∀n≥4  Σ_(k=1) ^n k!=1+2!+3!+Σ_(k≥4) k!≡(1+2+6+24)[5]  ≡3[5]  n=5k,n^2 ≡0[5]  n=(5k+_− 1)^2 ≡1[5]  n=(5k+_− 2)≡4[5]  so impossibl to get 3[5]  ⇒∀n≥4; (√(Σ_(k=1) ^n k!))∉N  n∈{1,3}
$${Let}\:{n}\in\mathbb{N}\:{suche} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}!={m}^{\mathrm{2}} \\ $$$${for}\:{n}=\mathrm{1},{n}=\mathrm{3}\:{we}\:{get}\:{solution} \\ $$$$\forall{n}\geqslant\mathrm{4} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}!=\mathrm{1}+\mathrm{2}!+\mathrm{3}!+\underset{{k}\geqslant\mathrm{4}} {\sum}{k}!\equiv\left(\mathrm{1}+\mathrm{2}+\mathrm{6}+\mathrm{24}\right)\left[\mathrm{5}\right] \\ $$$$\equiv\mathrm{3}\left[\mathrm{5}\right] \\ $$$${n}=\mathrm{5}{k},{n}^{\mathrm{2}} \equiv\mathrm{0}\left[\mathrm{5}\right] \\ $$$${n}=\left(\mathrm{5}{k}\underset{−} {+}\mathrm{1}\right)^{\mathrm{2}} \equiv\mathrm{1}\left[\mathrm{5}\right] \\ $$$${n}=\left(\mathrm{5}{k}\underset{−} {+}\mathrm{2}\right)\equiv\mathrm{4}\left[\mathrm{5}\right] \\ $$$${so}\:{impossibl}\:{to}\:{get}\:\mathrm{3}\left[\mathrm{5}\right] \\ $$$$\Rightarrow\forall{n}\geqslant\mathrm{4};\:\sqrt{\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}!}\notin\mathbb{N} \\ $$$${n}\in\left\{\mathrm{1},\mathrm{3}\right\} \\ $$
Commented by mathdanisur last updated on 26/Jul/21
Thank you Ser cool
$${Thank}\:{you}\:{Ser}\:{cool} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *