Menu Close

1-2-sin-3x-x-2-2-dx-1-2-3-1-sin-4t-t-2-3-4-dt-




Question Number 55360 by rahul 19 last updated on 22/Feb/19
 ∫_1 ^( 2) (√(sin (3x−x^2 −2)))dx + (1/2)∫_3 ^1 (√(sin(((4t−t^2 −3)/4))))dt  =?
$$\:\int_{\mathrm{1}} ^{\:\mathrm{2}} \sqrt{\mathrm{sin}\:\left(\mathrm{3}{x}−{x}^{\mathrm{2}} −\mathrm{2}\right)}{dx}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{3}} ^{\mathrm{1}} \sqrt{{sin}\left(\frac{\mathrm{4}{t}−{t}^{\mathrm{2}} −\mathrm{3}}{\mathrm{4}}\right)}{dt}\:\:=? \\ $$
Commented by rahul 19 last updated on 22/Feb/19
Ans: 0.
$${Ans}:\:\mathrm{0}. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Feb/19
−x^2 +3x−2→p(x)  −x^2 +x+2x−2  −x(x−1)+2(x−1)  (x−1)(2−x)  p(x)=0 at x=1 and x=2  p(x)=+ve   when 2>x>1  so (√(sinp(x))) making a loop with x axis  ((4t−t^2 −3)/4)→q(t)  ((−t^2 +t+3t−3)/4)  ((−t(t−1)+3(t−1))/4)  (((t−1)(3−t))/4)  q(t)=0  when t=1and t=3  q(t)=+ve when  3>t>1  so sin((√((q(t))/4)) ) make a loop   ∫_b ^a f(t)dt=∫_a ^b f(x)dx  (1/2)∫_3 ^1 (√(sinq(t))) dt=(1/2)∫_3 ^1 (√(sinq(x))) dx  now  ∫_1 ^2 (√(sinp(x))) dx+(1/2)∫_3 ^1 (√(sinq(x))) dx  =∫_1 ^2 (√(sinp(x))) dx−(1/2)∫_1 ^3 (√(sinq(x))) dx  =[∫_1 ^2 (√(sknp(x))) −(1/2)(√(sinq(x))) dx]−(1/2)∫_2 ^3 (√(sinq(x))) dx  wait...
$$−{x}^{\mathrm{2}} +\mathrm{3}{x}−\mathrm{2}\rightarrow{p}\left({x}\right) \\ $$$$−{x}^{\mathrm{2}} +{x}+\mathrm{2}{x}−\mathrm{2} \\ $$$$−{x}\left({x}−\mathrm{1}\right)+\mathrm{2}\left({x}−\mathrm{1}\right) \\ $$$$\left({x}−\mathrm{1}\right)\left(\mathrm{2}−{x}\right) \\ $$$${p}\left({x}\right)=\mathrm{0}\:{at}\:{x}=\mathrm{1}\:{and}\:{x}=\mathrm{2} \\ $$$${p}\left({x}\right)=+{ve}\:\:\:{when}\:\mathrm{2}>{x}>\mathrm{1} \\ $$$${so}\:\sqrt{{sinp}\left({x}\right)}\:{making}\:{a}\:{loop}\:{with}\:{x}\:{axis} \\ $$$$\frac{\mathrm{4}{t}−{t}^{\mathrm{2}} −\mathrm{3}}{\mathrm{4}}\rightarrow{q}\left({t}\right) \\ $$$$\frac{−{t}^{\mathrm{2}} +{t}+\mathrm{3}{t}−\mathrm{3}}{\mathrm{4}} \\ $$$$\frac{−{t}\left({t}−\mathrm{1}\right)+\mathrm{3}\left({t}−\mathrm{1}\right)}{\mathrm{4}} \\ $$$$\frac{\left({t}−\mathrm{1}\right)\left(\mathrm{3}−{t}\right)}{\mathrm{4}} \\ $$$${q}\left({t}\right)=\mathrm{0}\:\:{when}\:{t}=\mathrm{1}{and}\:{t}=\mathrm{3} \\ $$$${q}\left({t}\right)=+{ve}\:{when}\:\:\mathrm{3}>{t}>\mathrm{1} \\ $$$${so}\:{sin}\left(\sqrt{\frac{{q}\left({t}\right)}{\mathrm{4}}}\:\right)\:{make}\:{a}\:{loop}\: \\ $$$$\int_{{b}} ^{{a}} {f}\left({t}\right){dt}=\int_{{a}} ^{{b}} {f}\left({x}\right){dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{3}} ^{\mathrm{1}} \sqrt{{sinq}\left({t}\right)}\:{dt}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{3}} ^{\mathrm{1}} \sqrt{{sinq}\left({x}\right)}\:{dx} \\ $$$${now} \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}} \sqrt{{sinp}\left({x}\right)}\:{dx}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{3}} ^{\mathrm{1}} \sqrt{{sinq}\left({x}\right)}\:{dx} \\ $$$$=\int_{\mathrm{1}} ^{\mathrm{2}} \sqrt{{sinp}\left({x}\right)}\:{dx}−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{1}} ^{\mathrm{3}} \sqrt{{sinq}\left({x}\right)}\:{dx} \\ $$$$=\left[\int_{\mathrm{1}} ^{\mathrm{2}} \sqrt{{sknp}\left({x}\right)}\:−\frac{\mathrm{1}}{\mathrm{2}}\sqrt{{sinq}\left({x}\right)}\:{dx}\right]−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{2}} ^{\mathrm{3}} \sqrt{{sinq}\left({x}\right)}\:{dx} \\ $$$${wait}… \\ $$$$ \\ $$$$ \\ $$
Answered by MJS last updated on 25/Feb/19
∫_1 ^2 (√(sin (3x−x^2 −2)))dx=∫_1 ^2 (√(−sin ((x−1)(x−2))))dx=       [t=x−(3/2) → dx=dt]  =∫_(−1/2) ^(1/2) (√(−sin (t^2 −(1/4))))dt=2∫_0 ^(1/2) (√(−sin (t^2 −(1/4))))dt=       [u=t^2 −(1/4) → dt=(du/(2t))]  =2∫_(−1/4) ^0 (√(−((sin u)/(4u+1))))du=I_1     (1/2)∫_3 ^1 (√(sin (((4x−x^2 −3)/4))))dx=−(1/2)∫_1 ^3 (√(−sin (((x−1)(x−3))/4)))dx=       [t=x−2 → dx=dt]  =−(1/2)∫_(−1) ^1 (√(−sin ((t^2 −1)/4)))dt=−∫_0 ^1 (√(−sin ((t^2 −1)/4)))dt=       [u=((t^2 −1)/4) → dt=((2du)/t)]  =−2∫_(−1/4) ^0 (√(−((sin u)/(4u+1))))du=I_2     I_1 +I_2 =0
$$\underset{\mathrm{1}} {\overset{\mathrm{2}} {\int}}\sqrt{\mathrm{sin}\:\left(\mathrm{3}{x}−{x}^{\mathrm{2}} −\mathrm{2}\right)}{dx}=\underset{\mathrm{1}} {\overset{\mathrm{2}} {\int}}\sqrt{−\mathrm{sin}\:\left(\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\right)}{dx}= \\ $$$$\:\:\:\:\:\left[{t}={x}−\frac{\mathrm{3}}{\mathrm{2}}\:\rightarrow\:{dx}={dt}\right] \\ $$$$=\underset{−\mathrm{1}/\mathrm{2}} {\overset{\mathrm{1}/\mathrm{2}} {\int}}\sqrt{−\mathrm{sin}\:\left({t}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}\right)}{dt}=\mathrm{2}\underset{\mathrm{0}} {\overset{\mathrm{1}/\mathrm{2}} {\int}}\sqrt{−\mathrm{sin}\:\left({t}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}\right)}{dt}= \\ $$$$\:\:\:\:\:\left[{u}={t}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}\:\rightarrow\:{dt}=\frac{{du}}{\mathrm{2}{t}}\right] \\ $$$$=\mathrm{2}\underset{−\mathrm{1}/\mathrm{4}} {\overset{\mathrm{0}} {\int}}\sqrt{−\frac{\mathrm{sin}\:{u}}{\mathrm{4}{u}+\mathrm{1}}}{du}={I}_{\mathrm{1}} \\ $$$$ \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{3}} {\overset{\mathrm{1}} {\int}}\sqrt{\mathrm{sin}\:\left(\frac{\mathrm{4}{x}−{x}^{\mathrm{2}} −\mathrm{3}}{\mathrm{4}}\right)}{dx}=−\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{1}} {\overset{\mathrm{3}} {\int}}\sqrt{−\mathrm{sin}\:\frac{\left({x}−\mathrm{1}\right)\left({x}−\mathrm{3}\right)}{\mathrm{4}}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}={x}−\mathrm{2}\:\rightarrow\:{dx}={dt}\right] \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\sqrt{−\mathrm{sin}\:\frac{{t}^{\mathrm{2}} −\mathrm{1}}{\mathrm{4}}}{dt}=−\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\sqrt{−\mathrm{sin}\:\frac{{t}^{\mathrm{2}} −\mathrm{1}}{\mathrm{4}}}{dt}= \\ $$$$\:\:\:\:\:\left[{u}=\frac{{t}^{\mathrm{2}} −\mathrm{1}}{\mathrm{4}}\:\rightarrow\:{dt}=\frac{\mathrm{2}{du}}{{t}}\right] \\ $$$$=−\mathrm{2}\underset{−\mathrm{1}/\mathrm{4}} {\overset{\mathrm{0}} {\int}}\sqrt{−\frac{\mathrm{sin}\:{u}}{\mathrm{4}{u}+\mathrm{1}}}{du}={I}_{\mathrm{2}} \\ $$$$ \\ $$$${I}_{\mathrm{1}} +{I}_{\mathrm{2}} =\mathrm{0} \\ $$
Commented by rahul 19 last updated on 25/Feb/19
thank you Sir!
$${thank}\:{you}\:{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *