Menu Close

1-2-tan-1-x-2-x-2-dx-




Question Number 186352 by normans last updated on 03/Feb/23
           ∫_1 ^( 2)   ((tan^(−1)  (x) + 2)/x^2 )  dx
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\int_{\mathrm{1}} ^{\:\mathrm{2}} \:\:\frac{\boldsymbol{{tan}}^{−\mathrm{1}} \:\left(\boldsymbol{{x}}\right)\:+\:\mathrm{2}}{\boldsymbol{{x}}^{\mathrm{2}} }\:\:\boldsymbol{{dx}}\:\:\:\:\:\:\: \\ $$$$ \\ $$
Answered by MJS_new last updated on 04/Feb/23
∫((2+arctan x)/x^2 )dx=2∫(dx/x^2 )+∫((arctan x)/x^2 )dx  2∫(dx/x^2 )=−(2/x)+C_1   ∫((arctan x)/x^2 )dx=−((arctan x)/x)+∫(dx/(x(x^2 +1)))  ∫(dx/(x(x^2 +1)))=∫((1/x)−(x/(x^2 +1)))dx=(1/2)ln (x^2 /(x^2 +1)) +C_2   ⇒  answer is 1−((ln 5 −3ln 2)/2)+(1/2)arctan (1/2)
$$\int\frac{\mathrm{2}+\mathrm{arctan}\:{x}}{{x}^{\mathrm{2}} }{dx}=\mathrm{2}\int\frac{{dx}}{{x}^{\mathrm{2}} }+\int\frac{\mathrm{arctan}\:{x}}{{x}^{\mathrm{2}} }{dx} \\ $$$$\mathrm{2}\int\frac{{dx}}{{x}^{\mathrm{2}} }=−\frac{\mathrm{2}}{{x}}+{C}_{\mathrm{1}} \\ $$$$\int\frac{\mathrm{arctan}\:{x}}{{x}^{\mathrm{2}} }{dx}=−\frac{\mathrm{arctan}\:{x}}{{x}}+\int\frac{{dx}}{{x}\left({x}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$$\int\frac{{dx}}{{x}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}=\int\left(\frac{\mathrm{1}}{{x}}−\frac{{x}}{{x}^{\mathrm{2}} +\mathrm{1}}\right){dx}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} +\mathrm{1}}\:+{C}_{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$$\mathrm{answer}\:\mathrm{is}\:\mathrm{1}−\frac{\mathrm{ln}\:\mathrm{5}\:−\mathrm{3ln}\:\mathrm{2}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{arctan}\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *