Menu Close

1-2-x-gt-1-x-1-




Question Number 164568 by leonhard77 last updated on 19/Jan/22
   (1/( (√(2−x)))) > (1/(x−1))
12x>1x1
Answered by TheSupreme last updated on 19/Jan/22
x<2, x≠1   { (((1/(x−1))<0 ∪  { (((1/(x−1))>0)),(((1/(2−x))>(1/((x−1)^2 )))) :})),() :}   { ((x<1 ∪  { ((x>1)),((x^2 −x>0)) :})),((x<2 )) :}  x<1 ∪ 1<x<2  x<2 , x≠1
x<2,x1{1x1<0{1x1>012x>1(x1)2{x<1{x>1x2x>0x<2x<11<x<2x<2,x1
Answered by alephzero last updated on 19/Jan/22
(1/( (√(2−x)))) > (1/(x−1))  ⇒ x ∈ (−∞, 1) ∪ (1, 2)..................(i)  (1/( (√(2−x))))−(1/(x−1)) > 0  ((x−1−(√(2−x)))/( (x−1)(√(2−x)))) > 0  (ii) { ((x−1−(√(2−x)) > 0)),(((x−1)(√(2−x)) > 0)) :}  (iii) { ((x−1−(√(2−x)) < 0)),(((x−1)(√(2−x)) < 0)) :}  (ii) { ((x ∈ (((1+(√5))/2), +∞))),((x ∈ (1, 2) ∪ (2, +∞))) :}  (iii) { ((x ∈ (−∞, ((1+(√5))/2)))),((x ∈ (−∞, 1))) :}  ⇒ x ∈ (((1+(√5))/2), 2) ∪ (2, +∞)...........(ii)        x ∈ (−∞, 1)...........................(iii)  (i) ∪ (ii) ∪ (iii) ⇒  ⇒ x ∈ (−∞, 1) ∪ (((1+(√5))/2), 2)  Or x < 1, ((1+(√5))/2) < x < 2
12x>1x1x(,1)(1,2)(i)12x1x1>0x12x(x1)2x>0(ii){x12x>0(x1)2x>0(iii){x12x<0(x1)2x<0(ii){x(1+52,+)x(1,2)(2,+)(iii){x(,1+52)x(,1)x(1+52,2)(2,+)..(ii)x(,1)(iii)(i)(ii)(iii)x(,1)(1+52,2)Orx<1,1+52<x<2

Leave a Reply

Your email address will not be published. Required fields are marked *