Menu Close

1-2x-3x-2-4x-3-dx-0-lt-x-lt-1-




Question Number 41651 by rahul 19 last updated on 10/Aug/18
∫( 1+2x+3x^2 +4x^3 +.........) dx ,     (0<∣x∣<1)
$$\int\left(\:\mathrm{1}+\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{3}} +………\right)\:{dx}\:,\:\:\: \\ $$$$\left(\mathrm{0}<\mid{x}\mid<\mathrm{1}\right) \\ $$
Commented by maxmathsup by imad last updated on 10/Aug/18
∫ (1+2x+3x^2 +4x^3 +...)dx = ∫( Σ_(n=1) ^∞  nx^(n−1) )dx  =Σ_(n=1) ^∞   n ∫  x^(n−1) dx =Σ_(n=1) ^∞  x^n  =(1/(1−x)) −1  +c = (x/(x−1)) +c    with ∣x∣<1 .
$$\int\:\left(\mathrm{1}+\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{3}} +…\right){dx}\:=\:\int\left(\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{nx}^{{n}−\mathrm{1}} \right){dx} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:{n}\:\int\:\:{x}^{{n}−\mathrm{1}} {dx}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:{x}^{{n}} \:=\frac{\mathrm{1}}{\mathrm{1}−{x}}\:−\mathrm{1}\:\:+{c}\:=\:\frac{{x}}{{x}−\mathrm{1}}\:+{c}\:\:\:\:{with}\:\mid{x}\mid<\mathrm{1}\:. \\ $$
Answered by alex041103 last updated on 10/Aug/18
1+2x+3x^2 +...=Σ_(n=0) ^∞ (n+1)x^n   ⇒∫( 1+2x+3x^2 +4x^3 +.........) dx =  =∫Σ_(n=0) ^∞ (n+1)x^n  dx=Σ_(n=0) ^∞ ∫(n+1)x^n dx=  =C+Σ_(n=0) ^∞ ((n+1)/(n+1))x^(n+1) =C+Σ_(n=0) ^∞ x^(n+1) =  =C+(Σ_(n=0) ^∞ x^n ) −1=(Σ_(n=0) ^∞ x^n )+C_1   For ∣x∣<1: Σ_(n=0) ^∞ x^n =(1/(1−x))  ⇒∫( 1+2x+3x^2 +4x^3 +.........) dx =(1/(1−x))+C
$$\mathrm{1}+\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} +…=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left({n}+\mathrm{1}\right){x}^{{n}} \\ $$$$\Rightarrow\int\left(\:\mathrm{1}+\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{3}} +………\right)\:{dx}\:= \\ $$$$=\int\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left({n}+\mathrm{1}\right){x}^{{n}} \:{dx}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int\left({n}+\mathrm{1}\right){x}^{{n}} {dx}= \\ $$$$={C}+\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}+\mathrm{1}}{{n}+\mathrm{1}}{x}^{{n}+\mathrm{1}} ={C}+\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{n}+\mathrm{1}} = \\ $$$$={C}+\left(\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{n}} \right)\:−\mathrm{1}=\left(\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{n}} \right)+{C}_{\mathrm{1}} \\ $$$${For}\:\mid{x}\mid<\mathrm{1}:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{n}} =\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$$$\Rightarrow\int\left(\:\mathrm{1}+\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{3}} +………\right)\:{dx}\:=\frac{\mathrm{1}}{\mathrm{1}−{x}}+{C} \\ $$
Commented by rahul 19 last updated on 10/Aug/18
thanks sir!
$$\mathrm{thanks}\:\mathrm{sir}! \\ $$
Answered by rahul 19 last updated on 10/Aug/18
∫ (d/dx)(x+x^2 +x^3 +.........)dx   ⇒ x+x^2 +x^3 +..........  ⇒(x/(1−x)).  What′s wrong in this?
$$\int\:\frac{\mathrm{d}}{\mathrm{d}{x}}\left({x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +………\right){dx}\: \\ $$$$\Rightarrow\:{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +………. \\ $$$$\Rightarrow\frac{{x}}{\mathrm{1}−{x}}. \\ $$$${W}\mathrm{hat}'\mathrm{s}\:\mathrm{wrong}\:\mathrm{in}\:\mathrm{this}? \\ $$
Commented by alex041103 last updated on 10/Aug/18
Nothing is wrong. If you look more  carefully yoi will see that:  (x/(1−x))=−((1−x −1)/(1−x))=−(((1−x)/(1−x))−(1/(1−x)))=  =(1/(1+x))−1=(1/(1+x))+C  As you can see the integration constant  is sth very imortant
$${Nothing}\:{is}\:{wrong}.\:{If}\:{you}\:{look}\:{more} \\ $$$${carefully}\:{yoi}\:{will}\:{see}\:{that}: \\ $$$$\frac{{x}}{\mathrm{1}−{x}}=−\frac{\mathrm{1}−{x}\:−\mathrm{1}}{\mathrm{1}−{x}}=−\left(\frac{\mathrm{1}−{x}}{\mathrm{1}−{x}}−\frac{\mathrm{1}}{\mathrm{1}−{x}}\right)= \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}+{x}}−\mathrm{1}=\frac{\mathrm{1}}{\mathrm{1}+{x}}+{C} \\ $$$${As}\:{you}\:{can}\:{see}\:{the}\:{integration}\:{constant} \\ $$$${is}\:{sth}\:{very}\:{imortant} \\ $$
Commented by rahul 19 last updated on 10/Aug/18
ohh, yes u r right sir!
$$\mathrm{ohh},\:\mathrm{yes}\:\mathrm{u}\:\mathrm{r}\:\mathrm{right}\:\mathrm{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *