Menu Close

1-2x-3x-2-4x-3-dx-0-lt-x-lt-1-




Question Number 41651 by rahul 19 last updated on 10/Aug/18
∫( 1+2x+3x^2 +4x^3 +.........) dx ,     (0<∣x∣<1)
(1+2x+3x2+4x3+)dx,(0<∣x∣<1)
Commented by maxmathsup by imad last updated on 10/Aug/18
∫ (1+2x+3x^2 +4x^3 +...)dx = ∫( Σ_(n=1) ^∞  nx^(n−1) )dx  =Σ_(n=1) ^∞   n ∫  x^(n−1) dx =Σ_(n=1) ^∞  x^n  =(1/(1−x)) −1  +c = (x/(x−1)) +c    with ∣x∣<1 .
(1+2x+3x2+4x3+)dx=(n=1nxn1)dx=n=1nxn1dx=n=1xn=11x1+c=xx1+cwithx∣<1.
Answered by alex041103 last updated on 10/Aug/18
1+2x+3x^2 +...=Σ_(n=0) ^∞ (n+1)x^n   ⇒∫( 1+2x+3x^2 +4x^3 +.........) dx =  =∫Σ_(n=0) ^∞ (n+1)x^n  dx=Σ_(n=0) ^∞ ∫(n+1)x^n dx=  =C+Σ_(n=0) ^∞ ((n+1)/(n+1))x^(n+1) =C+Σ_(n=0) ^∞ x^(n+1) =  =C+(Σ_(n=0) ^∞ x^n ) −1=(Σ_(n=0) ^∞ x^n )+C_1   For ∣x∣<1: Σ_(n=0) ^∞ x^n =(1/(1−x))  ⇒∫( 1+2x+3x^2 +4x^3 +.........) dx =(1/(1−x))+C
1+2x+3x2+=n=0(n+1)xn(1+2x+3x2+4x3+)dx==n=0(n+1)xndx=n=0(n+1)xndx==C+n=0n+1n+1xn+1=C+n=0xn+1==C+(n=0xn)1=(n=0xn)+C1Forx∣<1:n=0xn=11x(1+2x+3x2+4x3+)dx=11x+C
Commented by rahul 19 last updated on 10/Aug/18
thanks sir!
thankssir!
Answered by rahul 19 last updated on 10/Aug/18
∫ (d/dx)(x+x^2 +x^3 +.........)dx   ⇒ x+x^2 +x^3 +..........  ⇒(x/(1−x)).  What′s wrong in this?
ddx(x+x2+x3+)dxx+x2+x3+.x1x.Whatswronginthis?
Commented by alex041103 last updated on 10/Aug/18
Nothing is wrong. If you look more  carefully yoi will see that:  (x/(1−x))=−((1−x −1)/(1−x))=−(((1−x)/(1−x))−(1/(1−x)))=  =(1/(1+x))−1=(1/(1+x))+C  As you can see the integration constant  is sth very imortant
Nothingiswrong.Ifyoulookmorecarefullyyoiwillseethat:x1x=1x11x=(1x1x11x)==11+x1=11+x+CAsyoucanseetheintegrationconstantissthveryimortant
Commented by rahul 19 last updated on 10/Aug/18
ohh, yes u r right sir!
ohh,yesurrightsir!

Leave a Reply

Your email address will not be published. Required fields are marked *