Menu Close

1-2xy-dx-4y-3-x-2-dy-0-




Question Number 96117 by bobhans last updated on 30/May/20
(1−2xy) dx + (4y^3 −x^2 ) dy = 0
$$\left(\mathrm{1}−\mathrm{2}{xy}\right)\:{dx}\:+\:\left(\mathrm{4}{y}^{\mathrm{3}} −{x}^{\mathrm{2}} \right)\:{dy}\:=\:\mathrm{0}\: \\ $$
Answered by john santu last updated on 30/May/20
Commented by john santu last updated on 30/May/20
typo in 6^(th)  line.  it should be g′(y) = 4y^3 −x^2 −(∂/∂y)(∫M(x,y) dx )
$$\mathrm{typo}\:\mathrm{in}\:\mathrm{6}^{\mathrm{th}} \:\mathrm{line}. \\ $$$$\mathrm{it}\:\mathrm{should}\:\mathrm{be}\:\mathrm{g}'\left(\mathrm{y}\right)\:=\:\mathrm{4y}^{\mathrm{3}} −\mathrm{x}^{\mathrm{2}} −\frac{\partial}{\partial\mathrm{y}}\left(\int\mathrm{M}\left({x},\mathrm{y}\right)\:{dx}\:\right)\: \\ $$
Commented by bobhans last updated on 30/May/20
thank you
$$\mathrm{thank}\:\mathrm{you} \\ $$
Commented by i jagooll last updated on 30/May/20
yeahhh
Commented by Tinku Tara last updated on 02/Jun/20
Hi jagooll  Are you able to post questions  now.
$$\mathrm{Hi}\:\mathrm{jagooll} \\ $$$$\mathrm{Are}\:\mathrm{you}\:\mathrm{able}\:\mathrm{to}\:\mathrm{post}\:\mathrm{questions} \\ $$$$\mathrm{now}. \\ $$
Answered by bemath last updated on 30/May/20
in other way   dx−(2xy dx+x^2  dy ) + 4y^3  dy =0  dx−d(x^2 y) + 4y^3  dy =0  ∫ dx −∫ d(x^2 y)+∫ 4y^3  dy = C  x−x^2 y + y^4  = C
$${in}\:{other}\:{way}\: \\ $$$${dx}−\left(\mathrm{2}{xy}\:{dx}+{x}^{\mathrm{2}} \:{dy}\:\right)\:+\:\mathrm{4}{y}^{\mathrm{3}} \:{dy}\:=\mathrm{0} \\ $$$${dx}−{d}\left({x}^{\mathrm{2}} {y}\right)\:+\:\mathrm{4}{y}^{\mathrm{3}} \:{dy}\:=\mathrm{0} \\ $$$$\int\:{dx}\:−\int\:{d}\left({x}^{\mathrm{2}} {y}\right)+\int\:\mathrm{4}{y}^{\mathrm{3}} \:{dy}\:=\:{C} \\ $$$${x}−{x}^{\mathrm{2}} {y}\:+\:{y}^{\mathrm{4}} \:=\:{C}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *