Menu Close

1-3-3-1-5-3-1-11-3-1-13-3-1-19-3-1-21-3-1-29-3-1-31-3-




Question Number 130748 by Dwaipayan Shikari last updated on 28/Jan/21
(1/3^3 )−(1/5^3 )+(1/(11^3 ))−(1/(13^3 ))+(1/(19^3 ))−(1/(21^3 ))+(1/(29^3 ))−(1/(31^3 ))+..
$$\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{11}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{13}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{19}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{21}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{29}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{31}^{\mathrm{3}} }+.. \\ $$
Answered by mindispower last updated on 28/Jan/21
=Σ_(k≥1) (1/((8k+3)^3 ))−Σ_(k≥1) (1/((8k−3)^3 ))+(1/3^3 )...A  cot(πx)=(1/x)+Σ_(n≥1) (1/((x−n)))+(1/((x+n)))  =(1/x)+Σ_(n≥1) ((1/(x+n))+(1/(x−n)))  3rd derivate =(2/x^3 )+Σ(2/((x+n)^3 ))−(2/((n−x)^3 ))  x=(3/8), give close forme for A
$$=\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{\left(\mathrm{8}{k}+\mathrm{3}\right)^{\mathrm{3}} }−\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{\left(\mathrm{8}{k}−\mathrm{3}\right)^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }…{A} \\ $$$${cot}\left(\pi{x}\right)=\frac{\mathrm{1}}{{x}}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{\left({x}−{n}\right)}+\frac{\mathrm{1}}{\left({x}+{n}\right)} \\ $$$$=\frac{\mathrm{1}}{{x}}+\underset{{n}\geqslant\mathrm{1}} {\sum}\left(\frac{\mathrm{1}}{{x}+{n}}+\frac{\mathrm{1}}{{x}−{n}}\right) \\ $$$$\mathrm{3}{rd}\:{derivate}\:=\frac{\mathrm{2}}{{x}^{\mathrm{3}} }+\Sigma\frac{\mathrm{2}}{\left({x}+{n}\right)^{\mathrm{3}} }−\frac{\mathrm{2}}{\left({n}−{x}\right)^{\mathrm{3}} } \\ $$$${x}=\frac{\mathrm{3}}{\mathrm{8}},\:{give}\:{close}\:{forme}\:{for}\:{A} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *