Menu Close

1-3-4x-1-2x-2-x-2-dx-




Question Number 23020 by ANTARES_VY last updated on 25/Oct/17
∫_1 ^3 ((4x+1)/(2x^2 +x−2))dx=?
$$\underset{\mathrm{1}} {\overset{\mathrm{3}} {\int}}\frac{\mathrm{4}\boldsymbol{\mathrm{x}}+\mathrm{1}}{\mathrm{2}\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{x}}−\mathrm{2}}\boldsymbol{\mathrm{dx}}=? \\ $$
Commented by Joel577 last updated on 25/Oct/17
it′s already done
$${it}'{s}\:{already}\:{done} \\ $$
Commented by ANTARES_VY last updated on 25/Oct/17
calculate
$$\boldsymbol{\mathrm{calculate}} \\ $$
Commented by ANTARES_VY last updated on 25/Oct/17
calculate
$$\boldsymbol{\mathrm{calculate}} \\ $$
Answered by $@ty@m last updated on 27/Oct/17
=[ln (2x^2 +x−2)]_1 ^3   =ln 19−ln 1  =ln 19
$$=\left[\mathrm{ln}\:\left(\mathrm{2}{x}^{\mathrm{2}} +{x}−\mathrm{2}\right)\underset{\mathrm{1}} {\overset{\mathrm{3}} {\right]}} \\ $$$$=\mathrm{ln}\:\mathrm{19}−\mathrm{ln}\:\mathrm{1} \\ $$$$=\mathrm{ln}\:\mathrm{19} \\ $$
Commented by ajfour last updated on 26/Oct/17
ln 19
$$\mathrm{ln}\:\mathrm{19} \\ $$
Commented by $@ty@m last updated on 27/Oct/17
Thanks for correction...
$${Thanks}\:{for}\:{correction}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *