Menu Close

1-3-tan-x-1-3-tan-x-sin-2x-




Question Number 120551 by bobhans last updated on 01/Nov/20
 (1/( (√3)−tan x)) − (1/( (√3)+tan x)) = sin 2x
$$\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}−\mathrm{tan}\:\mathrm{x}}\:−\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}+\mathrm{tan}\:\mathrm{x}}\:=\:\mathrm{sin}\:\mathrm{2x} \\ $$
Answered by john santu last updated on 01/Nov/20
recall that sin 2x = ((2tan x)/(1+tan^2 x))  ⇔ (1/( (√3)−tan x))−(1/( (√3)+tan x)) = ((2tan x)/(1+tan^2 x))  letting tan x = p , gives (1/( (√3)−p))−(1/( (√3)+p))=((2p)/(1+p^2 ))  ⇔ ((2p)/(3−p^2 )) = ((2p)/(1+p^2 )) ; ((2p(1+p^2 −3+p^2 ))/((3−p^2 )(1+p^2 )))=0  → 2p (2p^2 −2)=0 → { ((p=0⇒tan x=0 ; x=nπ)),((p=±1⇒tan x=±1;x=±(π/4)+nπ)) :}
$${recall}\:{that}\:\mathrm{sin}\:\mathrm{2}{x}\:=\:\frac{\mathrm{2tan}\:{x}}{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} {x}} \\ $$$$\Leftrightarrow\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}−\mathrm{tan}\:{x}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}+\mathrm{tan}\:{x}}\:=\:\frac{\mathrm{2tan}\:{x}}{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} {x}} \\ $$$${letting}\:\mathrm{tan}\:{x}\:=\:{p}\:,\:{gives}\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}−{p}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}+{p}}=\frac{\mathrm{2}{p}}{\mathrm{1}+{p}^{\mathrm{2}} } \\ $$$$\Leftrightarrow\:\frac{\mathrm{2}{p}}{\mathrm{3}−{p}^{\mathrm{2}} }\:=\:\frac{\mathrm{2}{p}}{\mathrm{1}+{p}^{\mathrm{2}} }\:;\:\frac{\mathrm{2}{p}\left(\mathrm{1}+{p}^{\mathrm{2}} −\mathrm{3}+{p}^{\mathrm{2}} \right)}{\left(\mathrm{3}−{p}^{\mathrm{2}} \right)\left(\mathrm{1}+{p}^{\mathrm{2}} \right)}=\mathrm{0} \\ $$$$\rightarrow\:\mathrm{2}{p}\:\left(\mathrm{2}{p}^{\mathrm{2}} −\mathrm{2}\right)=\mathrm{0}\:\rightarrow\begin{cases}{{p}=\mathrm{0}\Rightarrow\mathrm{tan}\:{x}=\mathrm{0}\:;\:{x}={n}\pi}\\{{p}=\pm\mathrm{1}\Rightarrow\mathrm{tan}\:{x}=\pm\mathrm{1};{x}=\pm\frac{\pi}{\mathrm{4}}+{n}\pi}\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *