1-3-x-2-x-2-4x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 174336 by cortano1 last updated on 30/Jul/22 ∫31∣x−2∣x2−4xdx=? Answered by Mathspace last updated on 30/Jul/22 I=−∫12x−2x2−4xdx+∫23x−2x2−4xdxf(x)=x−2x(x−4)=ax+bx−4a=−2−4=12andb=4−24=12⇒∫12f(x)dx=12∫12(1x+1x−4)dx=12[ln∣x∣+ln∣x−4∣]12=12{2ln2−ln3}∫23x−2x2−4xdx=12∫23(1x+1x−4)dx=12[ln∣x∣+ln∣x−4∣]23=12{ln3−2ln2}⇒∫13∣x−2∣x2−4xdx=−12{2ln2−ln3}+12{ln3−2ln2}=−ln2+12ln3+12ln3−ln2=ln3−2ln2. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-43265Next Next post: cos-2x-2cos-2-1-cos-3x-4cos-3-x-3cos-x-cos-4x-8cos-4-x-8cos-2-x-1-cos-5x-16cos-5-x-20cos-3-5cos-x-cos-6x-32cos-6-x-48cos-4-x-18cos-2-x-1-cos-7x-64cos-7-x-112cos-5-x-56cos-3-x-4cos-x-cos-8 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.