Menu Close

1-3-x-2-x-2-4x-dx-




Question Number 174336 by cortano1 last updated on 30/Jul/22
 ∫_1 ^3  ((∣x−2∣)/(x^2 −4x)) dx =?
31x2x24xdx=?
Answered by Mathspace last updated on 30/Jul/22
I=−∫_1 ^2 ((x−2)/(x^2 −4x))dx+∫_2 ^3 ((x−2)/(x^2 −4x))dx  f(x)=((x−2)/(x(x−4)))=(a/x)+(b/(x−4))  a=((−2)/(−4))=(1/2) and b=((4−2)/4)=(1/2)  ⇒∫_1 ^2 f(x)dx=(1/2)∫_1 ^2 ((1/x)+(1/(x−4)))dx  =(1/2)[ln∣x∣+ln∣x−4∣]_1 ^2   =(1/2){2ln2−ln3}  ∫_2 ^3 ((x−2)/(x^2 −4x))dx=(1/2)∫_2 ^3 ((1/x)+(1/(x−4)))dx  =(1/2)[ln∣x∣+ln∣x−4∣]_2 ^3   =(1/2){ln3−2ln2} ⇒  ∫_1 ^3 ((∣x−2∣)/(x^2 −4x))dx=−(1/2){2ln2−ln3}  +(1/2){ln3−2ln2}  =−ln2+(1/2)ln3+(1/2)ln3−ln2  =ln3−2ln2 .
I=12x2x24xdx+23x2x24xdxf(x)=x2x(x4)=ax+bx4a=24=12andb=424=1212f(x)dx=1212(1x+1x4)dx=12[lnx+lnx4]12=12{2ln2ln3}23x2x24xdx=1223(1x+1x4)dx=12[lnx+lnx4]23=12{ln32ln2}13x2x24xdx=12{2ln2ln3}+12{ln32ln2}=ln2+12ln3+12ln3ln2=ln32ln2.

Leave a Reply

Your email address will not be published. Required fields are marked *