Menu Close

1-3-x-2x-1-ln-x-dx-




Question Number 125962 by bramlexs22 last updated on 15/Dec/20
  ∫_1 ^3  x^(2x)  (1+ln x) dx =?
$$\:\:\underset{\mathrm{1}} {\overset{\mathrm{3}} {\int}}\:{x}^{\mathrm{2}{x}} \:\left(\mathrm{1}+\mathrm{ln}\:{x}\right)\:{dx}\:=?\: \\ $$
Answered by liberty last updated on 16/Dec/20
 let x^x  = r → { ((x=1→r=1)),((x=3→r=27)) :} ∧ dr = x^x (1+ln x)dx  I=∫_1 ^3  x^x  .x^x (1+ln x) dx = ∫_1 ^(27)  r dr   I= (1/2)[ r^2  ]_1 ^(27)  = (1/2)×28×26 = 14×26= 364
$$\:{let}\:{x}^{{x}} \:=\:{r}\:\rightarrow\begin{cases}{{x}=\mathrm{1}\rightarrow{r}=\mathrm{1}}\\{{x}=\mathrm{3}\rightarrow{r}=\mathrm{27}}\end{cases}\:\wedge\:{dr}\:=\:{x}^{{x}} \left(\mathrm{1}+\mathrm{ln}\:{x}\right){dx} \\ $$$${I}=\underset{\mathrm{1}} {\overset{\mathrm{3}} {\int}}\:{x}^{{x}} \:.{x}^{{x}} \left(\mathrm{1}+\mathrm{ln}\:{x}\right)\:{dx}\:=\:\underset{\mathrm{1}} {\overset{\mathrm{27}} {\int}}\:{r}\:{dr}\: \\ $$$${I}=\:\frac{\mathrm{1}}{\mathrm{2}}\left[\:{r}^{\mathrm{2}} \:\right]_{\mathrm{1}} ^{\mathrm{27}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{28}×\mathrm{26}\:=\:\mathrm{14}×\mathrm{26}=\:\mathrm{364} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *