Menu Close

1-4-4-1-x-sin-x-1-x-dx-




Question Number 39441 by rahul 19 last updated on 06/Jul/18
∫_(1/4) ^( 4)  (1/x) sin (x−(1/x))dx = ?
$$\int_{\frac{\mathrm{1}}{\mathrm{4}}} ^{\:\mathrm{4}} \:\frac{\mathrm{1}}{{x}}\:\mathrm{sin}\:\left({x}−\frac{\mathrm{1}}{{x}}\right){dx}\:=\:? \\ $$
Commented by prof Abdo imad last updated on 06/Jul/18
changement  x=(1/t)  give  I  = −∫_(1/4) ^4  tsin((1/t) −t)((−dt)/t^2 )  = ∫_(1/4) ^4  (1/t)sin((1/t)−t)dt = −∫_(1/4) ^4   (1/t)sin(t−(1/t))dt  =−I ⇒ 2I =0 ⇒ I =0
$${changement}\:\:{x}=\frac{\mathrm{1}}{{t}}\:\:{give} \\ $$$${I}\:\:=\:−\int_{\frac{\mathrm{1}}{\mathrm{4}}} ^{\mathrm{4}} \:{tsin}\left(\frac{\mathrm{1}}{{t}}\:−{t}\right)\frac{−{dt}}{{t}^{\mathrm{2}} } \\ $$$$=\:\int_{\frac{\mathrm{1}}{\mathrm{4}}} ^{\mathrm{4}} \:\frac{\mathrm{1}}{{t}}{sin}\left(\frac{\mathrm{1}}{{t}}−{t}\right){dt}\:=\:−\int_{\frac{\mathrm{1}}{\mathrm{4}}} ^{\mathrm{4}} \:\:\frac{\mathrm{1}}{{t}}{sin}\left({t}−\frac{\mathrm{1}}{{t}}\right){dt} \\ $$$$=−{I}\:\Rightarrow\:\mathrm{2}{I}\:=\mathrm{0}\:\Rightarrow\:{I}\:=\mathrm{0} \\ $$
Commented by rahul 19 last updated on 06/Jul/18
Thanks prof Abdo ����

Leave a Reply

Your email address will not be published. Required fields are marked *