Menu Close

1-4sin-x-3cos-x-dx-evaluate-




Question Number 160013 by Odhiambojr last updated on 23/Nov/21
∫(1/(4sin x+3cos x))dx  evaluate
$$\int\frac{\mathrm{1}}{\mathrm{4}{sin}\:{x}+\mathrm{3}{cos}\:{x}}{dx} \\ $$$${evaluate} \\ $$
Commented by tounghoungko last updated on 23/Nov/21
  I=∫ (dx/(4sin x+3cos x)) =?  4sin x+3cos x=5((4/5)sin x+(3/5)cos x)   = 5 cos (x−α) ; where α=tan^(−1) ((4/3))  I = (1/5)∫ (dx/(cos (x−α)))   I=(1/5)∫ sec (x−α) dx  I=(1/5)ln ∣((1+sin (x−α))/(cos (x−α)))∣+c  I=(1/5) ln ∣((1+(3/5)sin x−(4/5)cos x)/((4/5)cos x+(3/5)sin x))∣+c  I= (1/5) ln ∣((5+3sin x−4cos x)/(4cos x+3sin x))∣ + c
$$\:\:{I}=\int\:\frac{{dx}}{\mathrm{4sin}\:{x}+\mathrm{3cos}\:{x}}\:=? \\ $$$$\mathrm{4sin}\:{x}+\mathrm{3cos}\:{x}=\mathrm{5}\left(\frac{\mathrm{4}}{\mathrm{5}}\mathrm{sin}\:{x}+\frac{\mathrm{3}}{\mathrm{5}}\mathrm{cos}\:{x}\right) \\ $$$$\:=\:\mathrm{5}\:\mathrm{cos}\:\left({x}−\alpha\right)\:;\:{where}\:\alpha=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{4}}{\mathrm{3}}\right) \\ $$$${I}\:=\:\frac{\mathrm{1}}{\mathrm{5}}\int\:\frac{{dx}}{\mathrm{cos}\:\left({x}−\alpha\right)}\: \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{5}}\int\:\mathrm{sec}\:\left({x}−\alpha\right)\:{dx} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{5}}\mathrm{ln}\:\mid\frac{\mathrm{1}+\mathrm{sin}\:\left({x}−\alpha\right)}{\mathrm{cos}\:\left({x}−\alpha\right)}\mid+{c} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{5}}\:\mathrm{ln}\:\mid\frac{\mathrm{1}+\frac{\mathrm{3}}{\mathrm{5}}\mathrm{sin}\:{x}−\frac{\mathrm{4}}{\mathrm{5}}\mathrm{cos}\:{x}}{\frac{\mathrm{4}}{\mathrm{5}}\mathrm{cos}\:{x}+\frac{\mathrm{3}}{\mathrm{5}}\mathrm{sin}\:{x}}\mid+{c} \\ $$$${I}=\:\frac{\mathrm{1}}{\mathrm{5}}\:\mathrm{ln}\:\mid\frac{\mathrm{5}+\mathrm{3sin}\:{x}−\mathrm{4cos}\:{x}}{\mathrm{4cos}\:{x}+\mathrm{3sin}\:{x}}\mid\:+\:{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *