Menu Close

1-4x-x-2-m-dx-




Question Number 63844 by mmkkmm000m last updated on 10/Jul/19
∫(1+4x+x^2 )^m dx
(1+4x+x2)mdx
Commented by mathmax by abdo last updated on 10/Jul/19
let A_m =∫ (x^2 +4x+1)^m  dx ⇒  A_m =∫ (x^2 +4x +4−3)^m dx =∫{(x+2)^2 −3}^m dx  =∫  Σ_(k=0) ^m C_k ^m   (x+2)^(2k)  (−3)^(m−k) dx  =Σ_(k=0) ^m  (−3)^(m−k)   C_m ^k  ∫ (x+2)^(2k)  dx  =Σ_(k=0) ^m  (−3)^(m−k)  C_m ^k   (1/(2k+1))(x+2)^(2k+1)  +C  =Σ_(k=0) ^m  (−3)^(m−k)  (C_m ^k /(2k+1))(x+2)^(2k+1)  +C .
letAm=(x2+4x+1)mdxAm=(x2+4x+43)mdx={(x+2)23}mdx=k=0mCkm(x+2)2k(3)\boldsymbolm\boldsymbolk\boldsymboldx=k=0m(3)mkCmk(x+2)2kdx=k=0m(3)mkCmk12k+1(x+2)2k+1+C=k=0m(3)mkCmk2k+1(x+2)2k+1+C.
Commented by mathmax by abdo last updated on 10/Jul/19
at line 3 change C_k ^m  by C_m ^k
atline3changeCkmbyCmk
Commented by mathmax by abdo last updated on 10/Jul/19
i have taken m from N.
ihavetakenmfromN.
Answered by MJS last updated on 10/Jul/19
(a+b+c)^n  with n∈N  we need the trinomial coefficients  (a+b+c)^n =Σ_(i, j, k)  ((n),((i, j, k)) )a^i b^j c^k  with i+j+k=n  and  ((n),((i, j, k)) )=((n!)/(i!j!k!))    for m, i, j, k∈N∧i+j+k=m we get  ∫(1+4x+x^2 )^m dx=  =∫Σ_(i, j, k)  ((m),((i, j, k)) )1^i (4x)^j (x^2 )^k dx=  =Σ_(i, j, k) (((m!)/(i!j!k!))∫4^j x^(j+2k) dx)=  =Σ_(i, j, k) (((4^j m!)/((j+2k+1)i!j!k!))x^(j+2k+1) )+C    for m∈Z^−  and m∈Q I′m still trying...
(a+b+c)nwithnNweneedthetrinomialcoefficients(a+b+c)n=i,j,k(ni,j,k)aibjckwithi+j+k=nand(ni,j,k)=n!i!j!k!form,i,j,kNi+j+k=mweget(1+4x+x2)mdx==i,j,k(mi,j,k)1i(4x)j(x2)kdx==i,j,k(m!i!j!k!4jxj+2kdx)==i,j,k(4jm!(j+2k+1)i!j!k!xj+2k+1)+CformZandmQImstilltrying
Answered by Hope last updated on 10/Jul/19
∫{(x+2)^2 −3}^m dx  y=(x+2)   3=a^2   I_m =∫(y^2 −a^2 )^m dy  I_m =(y^2 −a^2 )^m y−m∫(y^2 −a^2 )^(m−1) ×2y×ydy  =(y^2 −a^2 )^m ×y−2m∫(y^2 −a^2 )^(m−1) (y^2 −a^2 +a^2 )dy  =(y^2 −a^2 )^m ×y−2mI_m −2ma^2 I_(m−1)   I_m (1+2m)=y(y^2 −a^2 )^m −2ma^2 I_(m−1)   I_m =((y(y^2 −a^2 )^m )/(1+2m))−((2ma^2 )/(1+2m))I_(m−1)   ∫(1+4x+x^2 )^m dx  =(((x+2)(1+4x+x^2 )^m )/(1+2m))−((2m×3)/(1+2m))∫(1+4x+x^2 )^(m−1) dx  pls check...Tanmay
{(x+2)23}mdxy=(x+2)3=a2Im=(y2a2)mdyIm=(y2a2)mym(y2a2)m1×2y×ydy=(y2a2)m×y2m(y2a2)m1(y2a2+a2)dy=(y2a2)m×y2mIm2ma2Im1Im(1+2m)=y(y2a2)m2ma2Im1Im=y(y2a2)m1+2m2ma21+2mIm1(1+4x+x2)mdx=(x+2)(1+4x+x2)m1+2m2m×31+2m(1+4x+x2)m1dxplscheckTanmay
Answered by MJS last updated on 10/Jul/19
∫(1+4x+x^2 )^m dx with m∈Z^−   ∫(dx/((1+4x+x^2 )^n )) with n∈N  trying Ostrogradski′s Method  ∫((P(x))/(Q(x)))dx=((P_1 (x))/(Q_1 (x)))+∫((P_2 (x))/(Q_2 (x)))dx  Q_1 (x)=gcd (Q(x), Q′(x))  Q_2 (x)=((Q(x))/(Q_1 (x)))  P_1 (x), P_2 (x) can be found by comparing the  constant factors of  ((P(x))/(Q(x)))=(d/dx)[((P_1 (x))/(Q_1 (x)))]+((P_2 (x))/(Q_2 (x)))  degree P_i  <degree Q_i     P(x)=1  Q(x)=(1+4x+x^2 )^n   Q′(x)=2(2+x)(1+4x+x^2 )^(n−1)   Q_1 (x)=(1+4x+x^2 )^(n−1)   Q_2 (x)=1+4x+x^2     (1/((1+4x+x^2 )^n ))=((P_1 ′(x)(1+4x+x^2 )−(n−1)P_1 (x)+P_2 (x)(1+4x+x^2 )^(n−1) )/((1+4x+x^2 )^n ))  we cannot generally solve this I think  ∫(dx/((1+4x+x^2 )^1 ))=((√3)/6)ln ∣((x+2−(√3))/(x+2+(√3)))∣ +C  ∫(dx/((1+4x+x^2 )^2 ))=−((x+2)/(6(1+4x+x^2 )))+((√3)/(36))ln ∣((x+2−(√3))/(x+2+(√3)))∣ +C  ∫(dx/((1+4x+x^2 )^3 ))=((x^3 +6x^2 +7x−2)/(24(1+4x+x^2 )^2 ))+((√3)/(144))ln ∣((x+2−(√3))/(x+2+(√3)))∣ +C  ∫(dx/((1+4x+x^2 )^4 ))=−((5x^5 +50x^4 +160x^3 +160x^2 +19x+38)/(432(1+4x+x^2 )^3 ))+((5(√3))/(2592))ln ∣((x+2−(√3))/(x+2+(√3)))∣ +C  ...  we only need to find P_1  and P_2  and solve  the same integral ∫(dx/(1+4x+x^2 ))  maybe someone can find a formula for the  coefficients. Sir Ramanujan, where have you  been? ;−)
(1+4x+x2)mdxwithmZdx(1+4x+x2)nwithnNtryingOstrogradskisMethodP(x)Q(x)dx=P1(x)Q1(x)+P2(x)Q2(x)dxQ1(x)=gcd(Q(x),Q(x))Q2(x)=Q(x)Q1(x)P1(x),P2(x)canbefoundbycomparingtheconstantfactorsofP(x)Q(x)=ddx[P1(x)Q1(x)]+P2(x)Q2(x)degreePi<degreeQiP(x)=1Q(x)=(1+4x+x2)nQ(x)=2(2+x)(1+4x+x2)n1Q1(x)=(1+4x+x2)n1Q2(x)=1+4x+x21(1+4x+x2)n=P1(x)(1+4x+x2)(n1)P1(x)+P2(x)(1+4x+x2)n1(1+4x+x2)nwecannotgenerallysolvethisIthinkdx(1+4x+x2)1=36lnx+23x+2+3+Cdx(1+4x+x2)2=x+26(1+4x+x2)+336lnx+23x+2+3+Cdx(1+4x+x2)3=x3+6x2+7x224(1+4x+x2)2+3144lnx+23x+2+3+Cdx(1+4x+x2)4=5x5+50x4+160x3+160x2+19x+38432(1+4x+x2)3+532592lnx+23x+2+3+CweonlyneedtofindP1andP2andsolvethesameintegraldx1+4x+x2maybesomeonecanfindaformulaforthecoefficients.SirRamanujan,wherehaveyoubeen?;)

Leave a Reply

Your email address will not be published. Required fields are marked *