Menu Close

1-5-2-9-4-13-8-17-16-




Question Number 106337 by Dwaipayan Shikari last updated on 04/Aug/20
1+(5/2)+(9/4)+((13)/8)+((17)/(16))+......
1+52+94+138+1716+
Commented by Dwaipayan Shikari last updated on 04/Aug/20
1+5x+9x^2 +13x^3 +17x^4 +......     (x=(1/2))  S=1+5x+9x^2 +13x^3 +..  −2xS=−2x−10x^2 −18x^3 −...  x^2 S=                       x^2 +   5x^3 +....  S(1−2x+x^2 )=1+3x  S=((1+3x)/(1−2x+x^2 ))=((5/2)/(1/4))=10     (x=(1/2))
1+5x+9x2+13x3+17x4+(x=12)S=1+5x+9x2+13x3+..2xS=2x10x218x3x2S=x2+5x3+.S(12x+x2)=1+3xS=1+3x12x+x2=5214=10(x=12)
Commented by Ar Brandon last updated on 04/Aug/20
Amazing methode��
Commented by Dwaipayan Shikari last updated on 04/Aug/20
I have found this method idea on this book ���� https://drive.google.com/file/d/12J4x021yiK1X38OHkXoomTz_VuBlcIEt/view?usp=drivesdk
Commented by Ar Brandon last updated on 04/Aug/20
��Thanks bro
Answered by JDamian last updated on 04/Aug/20
Σ_(k=0) ^∞ ((4k+1)/2^k ) = 4Σ_(k=0) ^∞ (k/2^k ) + Σ_(k=0) ^∞ (1/2^k ) = 4Σ_(k=0) ^∞ (k/2^k ) +2  f(x) = 1+x+x^2 +x^3 + ∙∙∙ = (1/(1−x))    ∀∣x∣<1  f′(x) = 1+2x+3x^2 + ∙∙∙ = (1/((1−x)^2 ))    ∀∣x∣<1  g(x) = x∙f′(x) = x+2x^2 +3x^3 + ∙∙∙ =             = (x/((1−x)^2 ))    ∀∣x∣<1  g((1/2))= (1/2^1 ) + (2/2^2 ) + (3/2^3 ) + ∙∙∙ = ((1/2)/((1−(1/2))^2 )) = 2    Σ_(k=0) ^∞ ((4k+1)/2^k ) = 4∙2 + 2 = 10
k=04k+12k=4k=0k2k+k=012k=4k=0k2k+2f(x)=1+x+x2+x3+=11xx∣<1f(x)=1+2x+3x2+=1(1x)2x∣<1g(x)=xf(x)=x+2x2+3x3+==x(1x)2x∣<1g(12)=121+222+323+=12(112)2=2k=04k+12k=42+2=10
Commented by JDamian last updated on 04/Aug/20
Sigma symbol looks small. How can I get a bigger sigma symbol?
Commented by Ar Brandon last updated on 04/Aug/20
By selecting the given symbol then touching the 3 small  dots at the bottom-right corner. There you′ll find A^▼  and  A^▲ . You can use them to increase or decrease the   selected text.
Byselectingthegivensymbolthentouchingthe3smalldotsatthebottomrightcorner.ThereyoullfindA\blacktrinagledownandA.Youcanusethemtoincreaseordecreasetheselectedtext.
Commented by JDamian last updated on 04/Aug/20
I edited several times the last line of my answer, I increased the size of the sigma symbol and saved... but my answer is unchanged -- it seems to work fine in the editor but the changes are not shown in my answer
Commented by Ar Brandon last updated on 04/Aug/20
You're right, Sir. I too faced the same problem while trying to demonstrate what I was talking about.
Commented by Tinku Tara last updated on 05/Aug/20
There is bigger sigma symbol  press green color ★ key or  press green ∫ sign and  last∐ key.   Several enhancement were made  in last 2 weeks which are available  in offline editor but not in forum  as we giving user time to update  to latest version:  • Strike thru  • underline  • curly bracket below  • font size for every character  • table  • borderless table (this is primarily      intented for use in writing multiple      line in drawing)
Thereisbiggersigmasymbolpressgreencolorkeyorpressgreensignandlastkey.Severalenhancementweremadeinlast2weekswhichareavailableinofflineeditorbutnotinforumaswegivingusertimetoupdatetolatestversion:Strikethruunderlinecurlybracketbelowfontsizeforeverycharactertableborderlesstable(thisisprimarilyintentedforuseinwritingmultiplelineindrawing)
Commented by Tinku Tara last updated on 05/Aug/20
Commented by Tinku Tara last updated on 05/Aug/20
Commented by Tinku Tara last updated on 05/Aug/20
Answered by 1549442205PVT last updated on 04/Aug/20
The general term of the given sequence is   ((4n−3)/2^(n−1) ).We need calculate Σ_(n=1) ^(∞) ((4n−3)/2^(n−1) )=4Σ_(n=1) ^(∞) (n/2^(n−1) )−3Σ_(n=1) ^(∞) (1/2^(n−1) )  Set S_k =Σ_(n=1) ^k (n/2^(n−1) )=(1/1)+(2/2)+(3/2^2 )+(4/2^3 )+...+(k/2^(k−1) )  (1/2)S_k =(1/2)+(2/2^2 )+(3/2^3 )+(4/2^4 )+....+((k−1)/2^(k−1) )+(k/2^k )  Substrating two above equalities we get  0.5S_k =1+(1/2)+(1/2^2 )+(1/2^3 )+...+(1/2^(k−1) )−(k/2^k )  =((1−((1/2))^(k+1) )/(1/2))−(k/2^k )⇒S_k =4(1−((1/2))^(k+1) )−(k/2^(k−1) )   ⇒Σ_(n=1) ^(∞) (n/2^(n−1) )=lim_(k→∞)  S_k =lim_(k→∞) [4(1−((1/2))^(k+1) )−(k/2^(k−1) )]=4  Σ(1/2^(n−1) )=(1/1)+(1/2)+(1/2^2 )+...=lim_(n→∞) ((1/1)+(1/2)+(1/2^2 )+...+(1/2^n ))=  lim_(n→∞) (((1−((1/2))^(n+1) ))/(1−(1/2)))=lim_(n→∞) [2(1−((1/2))^(n+1) )]=2  Hence, Σ_(n=1) ^(∞) ((4n−3)/2^(n−1) )=4Σ_(n=1) ^(∞) (n/2^(n−1) )−3Σ_(n=1) ^(∞) (1/2^(n−1) )  =4.4−3.2=10
Thegeneraltermofthegivensequenceis4n32n1.WeneedcalculateΣn=14n32n1=4Σn=1n2n13Σn=112n1SetSk=kn=1n2n1=11+22+322+423++k2k112Sk=12+222+323+424+.+k12k1+k2kSubstratingtwoaboveequalitiesweget0.5Sk=1+12+122+123++12k1k2k=1(12)k+112k2kSk=4(1(12)k+1)k2k1Σn=1n2n1=limkSk=limk[4(1(12)k+1)k2k1]=4Σ12n1=11+12+122+=limn(11+12+122++12n)=limn(1(12)n+1)112=limn[2(1(12)n+1)]=2Hence,Σn=14n32n1=4Σn=1n2n13Σn=112n1=4.43.2=10
Commented by Dwaipayan Shikari last updated on 04/Aug/20
Or it can be?  S=1+(5/2)+(9/4)+((13)/8)+...  (S/2)=     (1/2) +(5/4) +(9/8)+...  ....(subtracting)  (S/2)=1+4((1/2)+(1/4)+(1/8)+....)  (S/2)=1+4(((1/2)/(1−(1/2))))=10
Oritcanbe?S=1+52+94+138+S2=12+54+98+.(subtracting)S2=1+4(12+14+18+.)S2=1+4(12112)=10
Answered by mathmax by abdo last updated on 04/Aug/20
S =Σ_(n=0) ^∞  ((4n+1)/2^n ) ⇒ S =4 Σ_(n=0) ^∞  (n/2^n ) +Σ_(n=0) ^∞  (1/2^n )  we have  Σ_(n=0) ^∞  (1/2^n ) =(1/(1−(1/2))) =2    Σ_(n=0) ^∞  (n/2^n ) =w((1/2)) with w(x) =Σ_(n=0) ^∞  nx^n   (we take ∣x∣<1)  we have Σ_(n=0) ^∞  x^n  =(1/(1−x)) ⇒Σ_(n=1) ^∞  nx^(n−1)  =(1/((1−x)^2 )) ⇒  Σ_(n=1) ^∞  nx^(n )  =(x/((1−x)^2 )) =w(x) ⇒w((1/2)) =(1/(2(1−(1/2))^2 )) =(4/2) =2 ⇒  S =4.2 +2 =10
S=n=04n+12nS=4n=0n2n+n=012nwehaven=012n=1112=2n=0n2n=w(12)withw(x)=n=0nxn(wetakex∣<1)wehaven=0xn=11xn=1nxn1=1(1x)2n=1nxn=x(1x)2=w(x)w(12)=12(112)2=42=2S=4.2+2=10

Leave a Reply

Your email address will not be published. Required fields are marked *