Menu Close

1-5-x-3-1-dx-




Question Number 93038 by i jagooll last updated on 10/May/20
∫_1 ^5  (√(x^3 +1)) dx = ?
$$\underset{\mathrm{1}} {\overset{\mathrm{5}} {\int}}\:\sqrt{\mathrm{x}^{\mathrm{3}} +\mathrm{1}}\:\mathrm{dx}\:=\:? \\ $$
Commented by abdomathmax last updated on 14/May/20
I  =∫_1 ^5  (√(x^3 +1))dx   changemement (√(x^3 +1))=x^(3/2)  +t  give x^3  +1 =(x^(3/2)  +t)^2  ⇒x^3  +1 =x^3  +2t x^(3/2)  +t^2  ⇒  2t x^(3/2)  +t^2 −1 =0  ⇒2t x^(3/2)  =1−t^2  ⇒  x^(3/2)  =((1−t^2 )/(2t)) ⇒x^3  =(((1−t^2 )/(2t)))^2  ⇒x =(((1−t^2 )/(2t)))^(2/3)  ⇒  dx =(2/3)((1/(2t))−(t/2))^′ (((1−t^2 )/(2t)))^(−(1/3))   =(2/3)(−(1/(2t^2 ))−(1/2))(((1−t^2 )/(2t)))^(−(1/3))   =−(1/3)((1/t^2 )+1)(((1−t^2 )^(−(1/3)) )/(2^(−(1/3))  t^(−(1/3)) ))=−(2^(1/3) /3)(((1+t^2 )(1−t^2 )^(−(1/3)) )/t^(5/3) )  I =−(2^(1/3) /3)∫_((√2)−1) ^((√(1+5^3 ))−5^(3/2) ) (((1−t^2 )/(2t))+t)×(((1+t^2 )(1−t^2 )^(−(1/3)) )/t^(5/3) )dt  =−(2^(1/3) /6)∫_((√2)−1) ^((√(1+5^3 ))−5^(3/2) )   (((1+t^2 )^2 (1−t^2 )^(−(1/3)) )/t^(8/3) ) dt  after we do the changement t =sinθ  be continued  ....
$${I}\:\:=\int_{\mathrm{1}} ^{\mathrm{5}} \:\sqrt{{x}^{\mathrm{3}} +\mathrm{1}}{dx}\:\:\:{changemement}\:\sqrt{{x}^{\mathrm{3}} +\mathrm{1}}={x}^{\frac{\mathrm{3}}{\mathrm{2}}} \:+{t} \\ $$$${give}\:{x}^{\mathrm{3}} \:+\mathrm{1}\:=\left({x}^{\frac{\mathrm{3}}{\mathrm{2}}} \:+{t}\right)^{\mathrm{2}} \:\Rightarrow{x}^{\mathrm{3}} \:+\mathrm{1}\:={x}^{\mathrm{3}} \:+\mathrm{2}{t}\:{x}^{\frac{\mathrm{3}}{\mathrm{2}}} \:+{t}^{\mathrm{2}} \:\Rightarrow \\ $$$$\mathrm{2}{t}\:{x}^{\frac{\mathrm{3}}{\mathrm{2}}} \:+{t}^{\mathrm{2}} −\mathrm{1}\:=\mathrm{0}\:\:\Rightarrow\mathrm{2}{t}\:{x}^{\frac{\mathrm{3}}{\mathrm{2}}} \:=\mathrm{1}−{t}^{\mathrm{2}} \:\Rightarrow \\ $$$${x}^{\frac{\mathrm{3}}{\mathrm{2}}} \:=\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{2}{t}}\:\Rightarrow{x}^{\mathrm{3}} \:=\left(\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{2}{t}}\right)^{\mathrm{2}} \:\Rightarrow{x}\:=\left(\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{2}{t}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} \:\Rightarrow \\ $$$${dx}\:=\frac{\mathrm{2}}{\mathrm{3}}\left(\frac{\mathrm{1}}{\mathrm{2}{t}}−\frac{{t}}{\mathrm{2}}\right)^{'} \left(\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{2}{t}}\right)^{−\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}\left(−\frac{\mathrm{1}}{\mathrm{2}{t}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{2}}\right)\left(\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{2}{t}}\right)^{−\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{\mathrm{1}}{{t}^{\mathrm{2}} }+\mathrm{1}\right)\frac{\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{3}}} }{\mathrm{2}^{−\frac{\mathrm{1}}{\mathrm{3}}} \:{t}^{−\frac{\mathrm{1}}{\mathrm{3}}} }=−\frac{\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{3}}} }{\mathrm{3}}\frac{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{3}}} }{{t}^{\frac{\mathrm{5}}{\mathrm{3}}} } \\ $$$${I}\:=−\frac{\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{3}}} }{\mathrm{3}}\int_{\sqrt{\mathrm{2}}−\mathrm{1}} ^{\sqrt{\mathrm{1}+\mathrm{5}^{\mathrm{3}} }−\mathrm{5}^{\frac{\mathrm{3}}{\mathrm{2}}} } \left(\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{2}{t}}+{t}\right)×\frac{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{3}}} }{{t}^{\frac{\mathrm{5}}{\mathrm{3}}} }{dt} \\ $$$$=−\frac{\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{3}}} }{\mathrm{6}}\int_{\sqrt{\mathrm{2}}−\mathrm{1}} ^{\sqrt{\mathrm{1}+\mathrm{5}^{\mathrm{3}} }−\mathrm{5}^{\frac{\mathrm{3}}{\mathrm{2}}} } \:\:\frac{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{3}}} }{{t}^{\frac{\mathrm{8}}{\mathrm{3}}} }\:{dt} \\ $$$${after}\:{we}\:{do}\:{the}\:{changement}\:{t}\:={sin}\theta\:\:{be}\:{continued} \\ $$$$…. \\ $$
Answered by TANMAY PANACEA … last updated on 10/May/20
f(x)=(√(x^3 +1))   f(1)=m=(√2)   f(5)=M=(√(126))   b=5   a=1   (b−a)=4  M(b−a)>∫_1 ^5 (√(x^3 +1)) dx>m(b−a)  (√(126)) ×4>I>(√2) ×4
$${f}\left({x}\right)=\sqrt{{x}^{\mathrm{3}} +\mathrm{1}}\: \\ $$$${f}\left(\mathrm{1}\right)={m}=\sqrt{\mathrm{2}}\: \\ $$$${f}\left(\mathrm{5}\right)={M}=\sqrt{\mathrm{126}}\: \\ $$$${b}=\mathrm{5}\:\:\:{a}=\mathrm{1}\:\:\:\left({b}−{a}\right)=\mathrm{4} \\ $$$${M}\left({b}−{a}\right)>\int_{\mathrm{1}} ^{\mathrm{5}} \sqrt{{x}^{\mathrm{3}} +\mathrm{1}}\:{dx}>{m}\left({b}−{a}\right) \\ $$$$\sqrt{\mathrm{126}}\:×\mathrm{4}>{I}>\sqrt{\mathrm{2}}\:×\mathrm{4} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *