Menu Close

1-6-1-8-1-1-6-1-4-1-1-6-1-1-




Question Number 146622 by mathdanisur last updated on 14/Jul/21
(1/( (6)^(1/8)  + 1)) ∙ (1/( (6)^(1/4)  + 1)) ∙ (1/( (√6) + 1)) + 1 = ?
$$\frac{\mathrm{1}}{\:\sqrt[{\mathrm{8}}]{\mathrm{6}}\:+\:\mathrm{1}}\:\centerdot\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{4}}]{\mathrm{6}}\:+\:\mathrm{1}}\:\centerdot\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}\:+\:\mathrm{1}}\:+\:\mathrm{1}\:=\:? \\ $$
Commented by hknkrc46 last updated on 14/Jul/21
★ (1/(((6)^(1/8)  + 1)((6)^(1/4)  + 1)((√6) + 1))) + 1  = (((6)^(1/8)  − 1)/(((6)^(1/8)  − 1)((6)^(1/8)  + 1)_((6)^(1/4)  − 1) ((6)^(1/4)  + 1)((√6) + 1))) + 1  = (((6)^(1/8)  − 1)/(((6)^(1/4)  − 1)((6)^(1/4)  + 1)_((√6) − 1) ((√6) + 1))) + 1  = (((6)^(1/8)  − 1)/(((√6) − 1)((√6) + 1))) + 1   = (((6)^(1/8)  − 1)/(6 − 1)) + 1 = (((6)^(1/8)  − 1)/5) + 1   = (((6)^(1/8)  + 4)/5)
$$\bigstar\:\frac{\mathrm{1}}{\left(\sqrt[{\mathrm{8}}]{\mathrm{6}}\:+\:\mathrm{1}\right)\left(\sqrt[{\mathrm{4}}]{\mathrm{6}}\:+\:\mathrm{1}\right)\left(\sqrt{\mathrm{6}}\:+\:\mathrm{1}\right)}\:+\:\mathrm{1} \\ $$$$=\:\frac{\sqrt[{\mathrm{8}}]{\mathrm{6}}\:−\:\mathrm{1}}{\underset{\sqrt[{\mathrm{4}}]{\mathrm{6}}\:−\:\mathrm{1}} {\underbrace{\left(\sqrt[{\mathrm{8}}]{\mathrm{6}}\:−\:\mathrm{1}\right)\left(\sqrt[{\mathrm{8}}]{\mathrm{6}}\:+\:\mathrm{1}\right)}}\left(\sqrt[{\mathrm{4}}]{\mathrm{6}}\:+\:\mathrm{1}\right)\left(\sqrt{\mathrm{6}}\:+\:\mathrm{1}\right)}\:+\:\mathrm{1} \\ $$$$=\:\frac{\sqrt[{\mathrm{8}}]{\mathrm{6}}\:−\:\mathrm{1}}{\underset{\sqrt{\mathrm{6}}\:−\:\mathrm{1}} {\underbrace{\left(\sqrt[{\mathrm{4}}]{\mathrm{6}}\:−\:\mathrm{1}\right)\left(\sqrt[{\mathrm{4}}]{\mathrm{6}}\:+\:\mathrm{1}\right)}}\left(\sqrt{\mathrm{6}}\:+\:\mathrm{1}\right)}\:+\:\mathrm{1} \\ $$$$=\:\frac{\sqrt[{\mathrm{8}}]{\mathrm{6}}\:−\:\mathrm{1}}{\left(\sqrt{\mathrm{6}}\:−\:\mathrm{1}\right)\left(\sqrt{\mathrm{6}}\:+\:\mathrm{1}\right)}\:+\:\mathrm{1}\: \\ $$$$=\:\frac{\sqrt[{\mathrm{8}}]{\mathrm{6}}\:−\:\mathrm{1}}{\mathrm{6}\:−\:\mathrm{1}}\:+\:\mathrm{1}\:=\:\frac{\sqrt[{\mathrm{8}}]{\mathrm{6}}\:−\:\mathrm{1}}{\mathrm{5}}\:+\:\mathrm{1}\: \\ $$$$=\:\frac{\sqrt[{\mathrm{8}}]{\mathrm{6}}\:+\:\mathrm{4}}{\mathrm{5}} \\ $$
Answered by som(math1967) last updated on 14/Jul/21
(((6)^(1/8) −1)/((^8 (√6)−1)(^8 (√6)+1)(^4 (√6)+1)((√6)+1))) +1  =(((6)^(1/8) −1)/((^4 (√6)−1)(^4 (√6)+1)((√6)+1))) +1  =(((6)^(1/8) −1)/( ((√6)−1)((√6)+1))) +1  =(((6)^(1/8) −1)/(6−1)) +1=((6)^(1/8) /5) +(4/5)
$$\frac{\sqrt[{\mathrm{8}}]{\mathrm{6}}−\mathrm{1}}{\left(^{\mathrm{8}} \sqrt{\mathrm{6}}−\mathrm{1}\right)\left(^{\mathrm{8}} \sqrt{\mathrm{6}}+\mathrm{1}\right)\left(^{\mathrm{4}} \sqrt{\mathrm{6}}+\mathrm{1}\right)\left(\sqrt{\mathrm{6}}+\mathrm{1}\right)}\:+\mathrm{1} \\ $$$$=\frac{\sqrt[{\mathrm{8}}]{\mathrm{6}}−\mathrm{1}}{\left(^{\mathrm{4}} \sqrt{\mathrm{6}}−\mathrm{1}\right)\left(^{\mathrm{4}} \sqrt{\mathrm{6}}+\mathrm{1}\right)\left(\sqrt{\mathrm{6}}+\mathrm{1}\right)}\:+\mathrm{1} \\ $$$$=\frac{\sqrt[{\mathrm{8}}]{\mathrm{6}}−\mathrm{1}}{\:\left(\sqrt{\mathrm{6}}−\mathrm{1}\right)\left(\sqrt{\mathrm{6}}+\mathrm{1}\right)}\:+\mathrm{1} \\ $$$$=\frac{\sqrt[{\mathrm{8}}]{\mathrm{6}}−\mathrm{1}}{\mathrm{6}−\mathrm{1}}\:+\mathrm{1}=\frac{\sqrt[{\mathrm{8}}]{\mathrm{6}}}{\mathrm{5}}\:+\frac{\mathrm{4}}{\mathrm{5}} \\ $$
Commented by mathdanisur last updated on 14/Jul/21
thanks Ser, but answer:  (6)^(1/8)
$${thanks}\:{Ser},\:{but}\:{answer}:\:\:\sqrt[{\mathrm{8}}]{\mathrm{6}} \\ $$
Commented by som(math1967) last updated on 14/Jul/21
where is wrong ?
$${where}\:{is}\:\boldsymbol{{wrong}}\:? \\ $$
Commented by mathdanisur last updated on 14/Jul/21
Ser, maybe the answer is wrong
$${Ser},\:{maybe}\:{the}\:{answer}\:{is}\:{wrong} \\ $$
Commented by som(math1967) last updated on 14/Jul/21
let (1/((^8 (√6)+1)(^4 (√6)+1)((√6)+1))) +1=^8 (√6)  (1/((^8 (√6)+1)(^4 (√6)+1)((√6)+1)))=^8 (√6)−1  (1/((^8 (√6)+1)(^4 (√6)+1)((√6)+1)(^8 (√6)−1)))=1  (1/(6−1))=1  ∴(1/5)=1  ??????  so I think ans is wrong
$${let}\:\frac{\mathrm{1}}{\left(^{\mathrm{8}} \sqrt{\mathrm{6}}+\mathrm{1}\right)\left(^{\mathrm{4}} \sqrt{\mathrm{6}}+\mathrm{1}\right)\left(\sqrt{\mathrm{6}}+\mathrm{1}\right)}\:+\mathrm{1}=^{\mathrm{8}} \sqrt{\mathrm{6}} \\ $$$$\frac{\mathrm{1}}{\left(^{\mathrm{8}} \sqrt{\mathrm{6}}+\mathrm{1}\right)\left(^{\mathrm{4}} \sqrt{\mathrm{6}}+\mathrm{1}\right)\left(\sqrt{\mathrm{6}}+\mathrm{1}\right)}=^{\mathrm{8}} \sqrt{\mathrm{6}}−\mathrm{1} \\ $$$$\frac{\mathrm{1}}{\left(^{\mathrm{8}} \sqrt{\mathrm{6}}+\mathrm{1}\right)\left(^{\mathrm{4}} \sqrt{\mathrm{6}}+\mathrm{1}\right)\left(\sqrt{\mathrm{6}}+\mathrm{1}\right)\left(^{\mathrm{8}} \sqrt{\mathrm{6}}−\mathrm{1}\right)}=\mathrm{1} \\ $$$$\frac{\mathrm{1}}{\mathrm{6}−\mathrm{1}}=\mathrm{1} \\ $$$$\therefore\frac{\mathrm{1}}{\mathrm{5}}=\mathrm{1}\:\:?????? \\ $$$${so}\:{I}\:{think}\:{ans}\:{is}\:{wrong} \\ $$
Commented by mathdanisur last updated on 14/Jul/21
answer wrong Ser, thank you
$${answer}\:{wrong}\:{Ser},\:{thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *