Menu Close

1-6-p-logp-p-2-1-log1-pi-2-log2-4pi-2-log3-9pi-2-p-prime-




Question Number 128236 by Dwaipayan Shikari last updated on 05/Jan/21
(1/6)Σ_p ^∞ ((logp)/(p^2 −1))=((log1)/π^2 )+((log2)/(4π^2 ))+((log3)/(9π^2 ))+...   (p=prime)
16plogpp21=log1π2+log24π2+log39π2+(p=prime)
Commented by Dwaipayan Shikari last updated on 05/Jan/21
ζ(s)=Π_p ^∞ (1−(1/p^s ))^(−1)   log(ζ(s))=−Σ_p ^∞ log(1−(1/p^s ))  ((ζ′(s))/(ζ(s)))=−Σ^∞ ((p^(−s) log(p))/(1−(1/p^s )))⇒ζ′(s)=ζ(s)Σ_p ^∞ ((logp)/(1−p^s ))  ζ′(s)=−Σ^∞ ((logn)/n^s )  ⇒((log1)/1)+((log2)/2^2 )+((log3)/3^2 )+...=(π^2 /6)Σ_p ^∞ ((logp)/(p^2 −1))  ⇒(1/6)Σ_p ^∞ ((logp)/(p^2 −1))=((log1)/π^2 )+((log2)/(4π^2 ))+...
ζ(s)=p(11ps)1log(ζ(s))=plog(11ps)ζ(s)ζ(s)=pslog(p)11psζ(s)=ζ(s)plogp1psζ(s)=lognnslog11+log222+log332+=π26plogpp2116plogpp21=log1π2+log24π2+

Leave a Reply

Your email address will not be published. Required fields are marked *