Menu Close

1-a-0-b-0-c-0-1-n-N-a-n-1-1-1-min-x-b-n-c-n-dx-b-n-1-1-1-mil-x-a-n-c-n-dx-c-n-1-1-1-max-x-b-n-a-n-dx-mil-a-b-c-est-le-terme-median-de-a-b-c-nature-de-a-n-




Question Number 160807 by ArielVyny last updated on 07/Dec/21
−1≤a_0 ≤b_0 ≤c_0 ≤1  ∀n∈N   a_(n+1) =∫_(−1) ^1 min(x,b_n ,c_n )dx  b_(n+1) =∫_(−1) ^1 mil(x,a_n ,c_n )dx  c_(n+1) =∫_(−1) ^1 max(x,b_n ,a_n )dx  mil(a,b,c) est le terme median de (a,b,c)  nature de (a_n ),(b_n ),(c_n )
$$−\mathrm{1}\leqslant{a}_{\mathrm{0}} \leqslant{b}_{\mathrm{0}} \leqslant{c}_{\mathrm{0}} \leqslant\mathrm{1} \\ $$$$\forall{n}\in\mathbb{N}\: \\ $$$${a}_{{n}+\mathrm{1}} =\int_{−\mathrm{1}} ^{\mathrm{1}} {min}\left({x},{b}_{{n}} ,{c}_{{n}} \right){dx} \\ $$$${b}_{{n}+\mathrm{1}} =\int_{−\mathrm{1}} ^{\mathrm{1}} {mil}\left({x},{a}_{{n}} ,{c}_{{n}} \right){dx} \\ $$$${c}_{{n}+\mathrm{1}} =\int_{−\mathrm{1}} ^{\mathrm{1}} {max}\left({x},{b}_{{n}} ,{a}_{{n}} \right){dx} \\ $$$${mil}\left({a},{b},{c}\right)\:{est}\:{le}\:{terme}\:{median}\:{de}\:\left({a},{b},{c}\right) \\ $$$${nature}\:{de}\:\left({a}_{{n}} \right),\left({b}_{{n}} \right),\left({c}_{{n}} \right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *