Question Number 160807 by ArielVyny last updated on 07/Dec/21
$$−\mathrm{1}\leqslant{a}_{\mathrm{0}} \leqslant{b}_{\mathrm{0}} \leqslant{c}_{\mathrm{0}} \leqslant\mathrm{1} \\ $$$$\forall{n}\in\mathbb{N}\: \\ $$$${a}_{{n}+\mathrm{1}} =\int_{−\mathrm{1}} ^{\mathrm{1}} {min}\left({x},{b}_{{n}} ,{c}_{{n}} \right){dx} \\ $$$${b}_{{n}+\mathrm{1}} =\int_{−\mathrm{1}} ^{\mathrm{1}} {mil}\left({x},{a}_{{n}} ,{c}_{{n}} \right){dx} \\ $$$${c}_{{n}+\mathrm{1}} =\int_{−\mathrm{1}} ^{\mathrm{1}} {max}\left({x},{b}_{{n}} ,{a}_{{n}} \right){dx} \\ $$$${mil}\left({a},{b},{c}\right)\:{est}\:{le}\:{terme}\:{median}\:{de}\:\left({a},{b},{c}\right) \\ $$$${nature}\:{de}\:\left({a}_{{n}} \right),\left({b}_{{n}} \right),\left({c}_{{n}} \right) \\ $$$$ \\ $$