Menu Close

1-a-0-calculate-0-a-n-2-x-2-n-2-x-2-2-dx-with-n-integr-2-find-0-n-2-x-2-n-2-x-2-2-dx-3-calculate-n-1-0-n-2-x-2-n-2-x-2-2-dx-




Question Number 32734 by caravan msup abdo. last updated on 01/Apr/18
1) a≥0  calculate ∫_0 ^a  ((n^2  −x^2 )/((n^2  +x^2 )^2 ))dx with  n integr  2) find  ∫_0 ^∞   ((n^2  −x^2 )/((n^2  +x^2 )^2 ))dx  3)calculate  Σ_(n=1) ^∞   ∫_0 ^∞  ((n^2  −x^2 )/((n^2  +x^2 )^2 )) dx .
1)a0calculate0an2x2(n2+x2)2dxwithnintegr2)find0n2x2(n2+x2)2dx3)calculaten=10n2x2(n2+x2)2dx.
Commented by abdo imad last updated on 08/Apr/18
let put I_n (a) = ∫_0 ^a   ((n^2  −x^2 )/((n^2  +x^2 )))dx   I_n (a) =n^2  ∫_0 ^a    (dx/((n^2  +x^2 )^2 ))  − ∫_0 ^a  ((n^2  +x^2  −n^2 )/((n^2  +x^2 )))dx  =2n^2  ∫_0 ^a    (dx/((n^2  +x^2 )^2 )) −∫_0 ^a   (dx/(n^2  +x^2 ))  .ch.x=nt give  ∫_0 ^a    (dx/(n^2  +x^2 )) = ∫_0 ^(a/n)     ((ndt)/(n^2 (1+t^2 ))) =(1/n) arctan((a/n)) also  ∫_0 ^a     (dx/((n^2  +x^2 )^2 )) = ∫_0 ^(a/n)    ((ndt)/(n^4 ( 1+t^2 )^2 )) = (1/n^3 ) ∫_0 ^(a/n)    (dt/((1+t^2 )^2 ))  =_(t=tanθ)    (1/n^3 ) ∫_0 ^(arctan((a/n)))       (((1+tan^2 θ)dθ)/((1+tan^2 θ)^2 ))  = (1/n^3 ) ∫_0 ^(arctan((a/n)))    (dθ/(1+tan^2 θ)) =(1/n^3 ) ∫_0 ^(arctan((a/n)))  (cos^2 θ)dθ  =(1/(2n^3 )) ∫_0 ^(arctan((a/n)))  (1+cos(2θ))dθ  = ((arctan((a/n)))/(2n^3 ))   + (1/(4n^3 )) [sin(2θ)]_0 ^(arctan((a/n)))   = ((arctan((a/n)))/(2n^3 )) +(1/(4n^3 )) sin(2arctan((a/n)))⇒  I_n (a) = ((arctan((a/n)))/n)  + (1/(2n)) sin(2arctan((a/n))) −(1/n) arctan((a/n))  I_n (a)  = (1/(2n)) sin (2 arctan((a/n))) .
letputIn(a)=0an2x2(n2+x2)dxIn(a)=n20adx(n2+x2)20an2+x2n2(n2+x2)dx=2n20adx(n2+x2)20adxn2+x2.ch.x=ntgive0adxn2+x2=0anndtn2(1+t2)=1narctan(an)also0adx(n2+x2)2=0anndtn4(1+t2)2=1n30andt(1+t2)2=t=tanθ1n30arctan(an)(1+tan2θ)dθ(1+tan2θ)2=1n30arctan(an)dθ1+tan2θ=1n30arctan(an)(cos2θ)dθ=12n30arctan(an)(1+cos(2θ))dθ=arctan(an)2n3+14n3[sin(2θ)]0arctan(an)=arctan(an)2n3+14n3sin(2arctan(an))In(a)=arctan(an)n+12nsin(2arctan(an))1narctan(an)In(a)=12nsin(2arctan(an)).
Commented by abdo imad last updated on 08/Apr/18
we have  sin(2arctan((a/n)))=2sin(arctan((a/n)))cos(arctsn((a/n)))  but we have the frmulae sin(arctanx)= (x/( (√(1+x^2 ))))  cos(arctanx) = (1/( (√(1+x^2 )))) ⇒  I_n (a) =(1/n)  ((a/n)/( (√(1+(a^2 /n^2 )))))  (1/( (√(1+(a^2 /n^2 ))))) = (a/((1+(a^2 /n^2 ))))= ((an^2 )/(n^2  +a^2 ))
wehavesin(2arctan(an))=2sin(arctan(an))cos(arctsn(an))butwehavethefrmulaesin(arctanx)=x1+x2cos(arctanx)=11+x2In(a)=1nan1+a2n211+a2n2=a(1+a2n2)=an2n2+a2
Commented by abdo imad last updated on 08/Apr/18
2) ∫_0 ^∞  ((n^2  −x^2 )/((n^2  +x^2 )^2 )) =lim_(a→+∞)  I_n (a) =lim_(a→+∞)   ((an^2 )/(n^2  +a^2 ))  =lim_(a→+∞)   (n^2 /a) =0 .
2)0n2x2(n2+x2)2=lima+In(a)=lima+an2n2+a2=lima+n2a=0.
Answered by hknkrc46 last updated on 04/Apr/18
1)x=ntanu⇒dx=n(1+tan^2 u)du=nsec^2 udu  x→a,u→arctan((a/n)) ∧ x→0,u→0  ∫_0 ^a ((n^2 −x^2 )/((n^2 +x^2 )^2 ))dx=∫_0 ^(arctan((a/n))) ((n^2 −(ntanu)^2 )/((n^2 +(ntanu)^2 )^2 ))nsec^2 udu  =∫_0 ^(arctan((a/n))) ((n^2 −n^2 tan^2 u)/((n^2 +n^2 tan^2 u)^2 ))nsec^2 udu  =∫_0 ^(arctan((a/n))) ((n^2 (1−tan^2 u))/((n^2 (1+tan^2 u))^2 ))nsec^2 udu  =∫_0 ^(arctan((a/n))) (((n^2 cos2u)/(cos^2 u))/(n^4 sec^4 u))nsec^2 udu  =∫_0 ^(arctan((a/n))) ((cos2u)/n)du=((sin2u)/(2n))∣_0 ^(arctan((a/n))) =((sin(2arctan((a/n))))/(2n))  =((sin(arctan((a/n)))cos(arctan((a/n))))/n)=(a/(a^2 +n^2 ))  ★ arctan((a/n))=ψ⇒tanψ=(a/n)⇒sinψ=(a/( (√(a^2 +n^2 )))) ∧ cosψ=(n/( (√(a^2 +n^2 ))))  2)∫_0 ^∞ ((n^2 −x^2 )/((n^2 +x^2 )^2 ))dx=lim_(a→∞) ∫_0 ^a ((n^2 −x^2 )/((n^2 +x^2 )^2 ))dx=lim_(a→∞) (a/(a^2 +n^2 ))=0  3)Σ_(n=1) ^∞ ∫_0 ^∞ ((n^2 −x^2 )/((n^2 +x^2 )^2 ))dx=lim_(k→∞) Σ_(n=1) ^k ∫_0 ^∞ ((n^2 −x^2 )/((n^2 +x^2 )^2 ))dx=0
1)x=ntanudx=n(1+tan2u)du=nsec2uduxa,uarctan(an)x0,u00an2x2(n2+x2)2dx=0arctan(an)n2(ntanu)2(n2+(ntanu)2)2nsec2udu=0arctan(an)n2n2tan2u(n2+n2tan2u)2nsec2udu=0arctan(an)n2(1tan2u)(n2(1+tan2u))2nsec2udu=0arctan(an)n2cos2ucos2un4sec4unsec2udu=0arctan(an)cos2undu=sin2u2n0arctan(an)=sin(2arctan(an))2n=sin(arctan(an))cos(arctan(an))n=aa2+n2arctan(an)=ψtanψ=ansinψ=aa2+n2cosψ=na2+n22)0n2x2(n2+x2)2dx=lima0an2x2(n2+x2)2dx=limaaa2+n2=03)n=10n2x2(n2+x2)2dx=limkn=1k0n2x2(n2+x2)2dx=0

Leave a Reply

Your email address will not be published. Required fields are marked *