Question Number 32734 by caravan msup abdo. last updated on 01/Apr/18
$$\left.\mathrm{1}\right)\:{a}\geqslant\mathrm{0}\:\:{calculate}\:\int_{\mathrm{0}} ^{{a}} \:\frac{{n}^{\mathrm{2}} \:−{x}^{\mathrm{2}} }{\left({n}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:{with} \\ $$$${n}\:{integr} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{n}^{\mathrm{2}} \:−{x}^{\mathrm{2}} }{\left({n}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{3}\right){calculate}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{n}^{\mathrm{2}} \:−{x}^{\mathrm{2}} }{\left({n}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}\:. \\ $$
Commented by abdo imad last updated on 08/Apr/18
$${let}\:{put}\:{I}_{{n}} \left({a}\right)\:=\:\int_{\mathrm{0}} ^{{a}} \:\:\frac{{n}^{\mathrm{2}} \:−{x}^{\mathrm{2}} }{\left({n}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \right)}{dx}\: \\ $$$${I}_{{n}} \left({a}\right)\:={n}^{\mathrm{2}} \:\int_{\mathrm{0}} ^{{a}} \:\:\:\frac{{dx}}{\left({n}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:\:−\:\int_{\mathrm{0}} ^{{a}} \:\frac{{n}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \:−{n}^{\mathrm{2}} }{\left({n}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \right)}{dx} \\ $$$$=\mathrm{2}{n}^{\mathrm{2}} \:\int_{\mathrm{0}} ^{{a}} \:\:\:\frac{{dx}}{\left({n}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:−\int_{\mathrm{0}} ^{{a}} \:\:\frac{{dx}}{{n}^{\mathrm{2}} \:+{x}^{\mathrm{2}} }\:\:.{ch}.{x}={nt}\:{give} \\ $$$$\int_{\mathrm{0}} ^{{a}} \:\:\:\frac{{dx}}{{n}^{\mathrm{2}} \:+{x}^{\mathrm{2}} }\:=\:\int_{\mathrm{0}} ^{\frac{{a}}{{n}}} \:\:\:\:\frac{{ndt}}{{n}^{\mathrm{2}} \left(\mathrm{1}+{t}^{\mathrm{2}} \right)}\:=\frac{\mathrm{1}}{{n}}\:{arctan}\left(\frac{{a}}{{n}}\right)\:{also} \\ $$$$\int_{\mathrm{0}} ^{{a}} \:\:\:\:\frac{{dx}}{\left({n}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:=\:\int_{\mathrm{0}} ^{\frac{{a}}{{n}}} \:\:\:\frac{{ndt}}{{n}^{\mathrm{4}} \left(\:\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\:\int_{\mathrm{0}} ^{\frac{{a}}{{n}}} \:\:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$=_{{t}={tan}\theta} \:\:\:\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\:\int_{\mathrm{0}} ^{{arctan}\left(\frac{{a}}{{n}}\right)} \:\:\:\:\:\:\frac{\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right){d}\theta}{\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right)^{\mathrm{2}} } \\ $$$$=\:\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\:\int_{\mathrm{0}} ^{{arctan}\left(\frac{{a}}{{n}}\right)} \:\:\:\frac{{d}\theta}{\mathrm{1}+{tan}^{\mathrm{2}} \theta}\:=\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\:\int_{\mathrm{0}} ^{{arctan}\left(\frac{{a}}{{n}}\right)} \:\left({cos}^{\mathrm{2}} \theta\right){d}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{3}} }\:\int_{\mathrm{0}} ^{{arctan}\left(\frac{{a}}{{n}}\right)} \:\left(\mathrm{1}+{cos}\left(\mathrm{2}\theta\right)\right){d}\theta \\ $$$$=\:\frac{{arctan}\left(\frac{{a}}{{n}}\right)}{\mathrm{2}{n}^{\mathrm{3}} }\:\:\:+\:\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{3}} }\:\left[{sin}\left(\mathrm{2}\theta\right)\right]_{\mathrm{0}} ^{{arctan}\left(\frac{{a}}{{n}}\right)} \\ $$$$=\:\frac{{arctan}\left(\frac{{a}}{{n}}\right)}{\mathrm{2}{n}^{\mathrm{3}} }\:+\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{3}} }\:{sin}\left(\mathrm{2}{arctan}\left(\frac{{a}}{{n}}\right)\right)\Rightarrow \\ $$$${I}_{{n}} \left({a}\right)\:=\:\frac{{arctan}\left(\frac{{a}}{{n}}\right)}{{n}}\:\:+\:\frac{\mathrm{1}}{\mathrm{2}{n}}\:{sin}\left(\mathrm{2}{arctan}\left(\frac{{a}}{{n}}\right)\right)\:−\frac{\mathrm{1}}{{n}}\:{arctan}\left(\frac{{a}}{{n}}\right) \\ $$$${I}_{{n}} \left({a}\right)\:\:=\:\frac{\mathrm{1}}{\mathrm{2}{n}}\:{sin}\:\left(\mathrm{2}\:{arctan}\left(\frac{{a}}{{n}}\right)\right)\:. \\ $$
Commented by abdo imad last updated on 08/Apr/18
$${we}\:{have}\:\:{sin}\left(\mathrm{2}{arctan}\left(\frac{{a}}{{n}}\right)\right)=\mathrm{2}{sin}\left({arctan}\left(\frac{{a}}{{n}}\right)\right){cos}\left({arctsn}\left(\frac{{a}}{{n}}\right)\right) \\ $$$${but}\:{we}\:{have}\:{the}\:{frmulae}\:{sin}\left({arctanx}\right)=\:\frac{{x}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$$${cos}\left({arctanx}\right)\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:\Rightarrow \\ $$$${I}_{{n}} \left({a}\right)\:=\frac{\mathrm{1}}{{n}}\:\:\frac{\frac{{a}}{{n}}}{\:\sqrt{\mathrm{1}+\frac{{a}^{\mathrm{2}} }{{n}^{\mathrm{2}} }}}\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\frac{{a}^{\mathrm{2}} }{{n}^{\mathrm{2}} }}}\:=\:\frac{{a}}{\left(\mathrm{1}+\frac{{a}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right)}=\:\frac{{an}^{\mathrm{2}} }{{n}^{\mathrm{2}} \:+{a}^{\mathrm{2}} } \\ $$
Commented by abdo imad last updated on 08/Apr/18
$$\left.\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\infty} \:\frac{{n}^{\mathrm{2}} \:−{x}^{\mathrm{2}} }{\left({n}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:={lim}_{{a}\rightarrow+\infty} \:{I}_{{n}} \left({a}\right)\:={lim}_{{a}\rightarrow+\infty} \:\:\frac{{an}^{\mathrm{2}} }{{n}^{\mathrm{2}} \:+{a}^{\mathrm{2}} } \\ $$$$={lim}_{{a}\rightarrow+\infty} \:\:\frac{{n}^{\mathrm{2}} }{{a}}\:=\mathrm{0}\:. \\ $$
Answered by hknkrc46 last updated on 04/Apr/18
$$\left.\mathrm{1}\right)\mathrm{x}=\mathrm{ntanu}\Rightarrow\mathrm{dx}=\mathrm{n}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{u}\right)\mathrm{du}=\mathrm{nsec}^{\mathrm{2}} \mathrm{udu} \\ $$$$\mathrm{x}\rightarrow\mathrm{a},\mathrm{u}\rightarrow\mathrm{arctan}\left(\frac{\mathrm{a}}{\mathrm{n}}\right)\:\wedge\:\mathrm{x}\rightarrow\mathrm{0},\mathrm{u}\rightarrow\mathrm{0} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{a}} \frac{\mathrm{n}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} }{\left(\mathrm{n}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dx}=\int_{\mathrm{0}} ^{\mathrm{arctan}\left(\frac{\mathrm{a}}{\mathrm{n}}\right)} \frac{\mathrm{n}^{\mathrm{2}} −\left(\mathrm{ntanu}\right)^{\mathrm{2}} }{\left(\mathrm{n}^{\mathrm{2}} +\left(\mathrm{ntanu}\right)^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{nsec}^{\mathrm{2}} \mathrm{udu} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{arctan}\left(\frac{\mathrm{a}}{\mathrm{n}}\right)} \frac{\mathrm{n}^{\mathrm{2}} −\mathrm{n}^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \mathrm{u}}{\left(\mathrm{n}^{\mathrm{2}} +\mathrm{n}^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \mathrm{u}\right)^{\mathrm{2}} }\mathrm{nsec}^{\mathrm{2}} \mathrm{udu} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{arctan}\left(\frac{\mathrm{a}}{\mathrm{n}}\right)} \frac{\mathrm{n}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \mathrm{u}\right)}{\left(\mathrm{n}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{u}\right)\right)^{\mathrm{2}} }\mathrm{nsec}^{\mathrm{2}} \mathrm{udu} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{arctan}\left(\frac{\mathrm{a}}{\mathrm{n}}\right)} \frac{\frac{\mathrm{n}^{\mathrm{2}} \mathrm{cos2u}}{\mathrm{cos}^{\mathrm{2}} \mathrm{u}}}{\mathrm{n}^{\mathrm{4}} \mathrm{sec}^{\mathrm{4}} \mathrm{u}}\mathrm{nsec}^{\mathrm{2}} \mathrm{udu} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{arctan}\left(\frac{\mathrm{a}}{\mathrm{n}}\right)} \frac{\mathrm{cos2u}}{\mathrm{n}}\mathrm{du}=\frac{\mathrm{sin2u}}{\mathrm{2n}}\mid_{\mathrm{0}} ^{\mathrm{arctan}\left(\frac{\mathrm{a}}{\mathrm{n}}\right)} =\frac{\mathrm{sin}\left(\mathrm{2arctan}\left(\frac{\mathrm{a}}{\mathrm{n}}\right)\right)}{\mathrm{2n}} \\ $$$$=\frac{\mathrm{sin}\left(\mathrm{arctan}\left(\frac{\mathrm{a}}{\mathrm{n}}\right)\right)\mathrm{cos}\left(\mathrm{arctan}\left(\frac{\mathrm{a}}{\mathrm{n}}\right)\right)}{\mathrm{n}}=\frac{\mathrm{a}}{\mathrm{a}^{\mathrm{2}} +\mathrm{n}^{\mathrm{2}} } \\ $$$$\bigstar\:\mathrm{arctan}\left(\frac{\mathrm{a}}{\mathrm{n}}\right)=\psi\Rightarrow\mathrm{tan}\psi=\frac{\mathrm{a}}{\mathrm{n}}\Rightarrow\mathrm{sin}\psi=\frac{\mathrm{a}}{\:\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{n}^{\mathrm{2}} }}\:\wedge\:\mathrm{cos}\psi=\frac{\mathrm{n}}{\:\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{n}^{\mathrm{2}} }} \\ $$$$\left.\mathrm{2}\right)\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{n}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} }{\left(\mathrm{n}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dx}=\mathrm{lim}_{\mathrm{a}\rightarrow\infty} \int_{\mathrm{0}} ^{\mathrm{a}} \frac{\mathrm{n}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} }{\left(\mathrm{n}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dx}=\mathrm{lim}_{\mathrm{a}\rightarrow\infty} \frac{\mathrm{a}}{\mathrm{a}^{\mathrm{2}} +\mathrm{n}^{\mathrm{2}} }=\mathrm{0} \\ $$$$\left.\mathrm{3}\right)\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \frac{\mathrm{n}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} }{\left(\mathrm{n}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dx}=\mathrm{lim}_{\mathrm{k}\rightarrow\infty} \sum_{\mathrm{n}=\mathrm{1}} ^{\mathrm{k}} \int_{\mathrm{0}} ^{\infty} \frac{\mathrm{n}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} }{\left(\mathrm{n}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dx}=\mathrm{0} \\ $$$$ \\ $$