Question Number 32734 by caravan msup abdo. last updated on 01/Apr/18

Commented by abdo imad last updated on 08/Apr/18
![let put I_n (a) = ∫_0 ^a ((n^2 −x^2 )/((n^2 +x^2 )))dx I_n (a) =n^2 ∫_0 ^a (dx/((n^2 +x^2 )^2 )) − ∫_0 ^a ((n^2 +x^2 −n^2 )/((n^2 +x^2 )))dx =2n^2 ∫_0 ^a (dx/((n^2 +x^2 )^2 )) −∫_0 ^a (dx/(n^2 +x^2 )) .ch.x=nt give ∫_0 ^a (dx/(n^2 +x^2 )) = ∫_0 ^(a/n) ((ndt)/(n^2 (1+t^2 ))) =(1/n) arctan((a/n)) also ∫_0 ^a (dx/((n^2 +x^2 )^2 )) = ∫_0 ^(a/n) ((ndt)/(n^4 ( 1+t^2 )^2 )) = (1/n^3 ) ∫_0 ^(a/n) (dt/((1+t^2 )^2 )) =_(t=tanθ) (1/n^3 ) ∫_0 ^(arctan((a/n))) (((1+tan^2 θ)dθ)/((1+tan^2 θ)^2 )) = (1/n^3 ) ∫_0 ^(arctan((a/n))) (dθ/(1+tan^2 θ)) =(1/n^3 ) ∫_0 ^(arctan((a/n))) (cos^2 θ)dθ =(1/(2n^3 )) ∫_0 ^(arctan((a/n))) (1+cos(2θ))dθ = ((arctan((a/n)))/(2n^3 )) + (1/(4n^3 )) [sin(2θ)]_0 ^(arctan((a/n))) = ((arctan((a/n)))/(2n^3 )) +(1/(4n^3 )) sin(2arctan((a/n)))⇒ I_n (a) = ((arctan((a/n)))/n) + (1/(2n)) sin(2arctan((a/n))) −(1/n) arctan((a/n)) I_n (a) = (1/(2n)) sin (2 arctan((a/n))) .](https://www.tinkutara.com/question/Q32969.png)
Commented by abdo imad last updated on 08/Apr/18

Commented by abdo imad last updated on 08/Apr/18

Answered by hknkrc46 last updated on 04/Apr/18
