Menu Close

1-a-1-b-1-c-1-a-b-c-Prove-that-1-a-5-1-b-5-1-c-5-1-a-5-b-5-c-5-1-a-b-c-5-




Question Number 192437 by MATHEMATICSAM last updated on 18/May/23
(1/a) + (1/b) + (1/c) = (1/(a + b + c)) . Prove that  (1/a^5 ) + (1/b^5 ) + (1/c^5 ) = (1/(a^5  + b^5  + c^5 )) = (1/((a + b + c)^5 ))
$$\frac{\mathrm{1}}{{a}}\:+\:\frac{\mathrm{1}}{{b}}\:+\:\frac{\mathrm{1}}{{c}}\:=\:\frac{\mathrm{1}}{{a}\:+\:{b}\:+\:{c}}\:.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\frac{\mathrm{1}}{{a}^{\mathrm{5}} }\:+\:\frac{\mathrm{1}}{{b}^{\mathrm{5}} }\:+\:\frac{\mathrm{1}}{{c}^{\mathrm{5}} }\:=\:\frac{\mathrm{1}}{{a}^{\mathrm{5}} \:+\:{b}^{\mathrm{5}} \:+\:{c}^{\mathrm{5}} }\:=\:\frac{\mathrm{1}}{\left({a}\:+\:{b}\:+\:{c}\right)^{\mathrm{5}} } \\ $$
Answered by Frix last updated on 18/May/23
(1/a)+(1/b)+(1/c)=(1/(a+b+c))  Transforming  (a+b)(a+c)(b+c)=0  ⇒ Only true if a=−b∨a=−c∨b=−c  Because of symmetry let b=−c  ⇒ (1/a)+(1/b)+(1/c)=(1/(a+b+c))=(1/a)  ⇒ (1/a^(2n+1) )+(1/b^(2n+1) )+(1/c^(2n+1) )=(1/(a^(2n+1) +b^(2n+1) +c^(2n+1) ))=  =(1/((a+b+c)^(2n+1) ))=(1/a^(2n+1) ) ∀n∈N
$$\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}=\frac{\mathrm{1}}{{a}+{b}+{c}} \\ $$$$\mathrm{Transforming} \\ $$$$\left({a}+{b}\right)\left({a}+{c}\right)\left({b}+{c}\right)=\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{Only}\:\mathrm{true}\:\mathrm{if}\:{a}=−{b}\vee{a}=−{c}\vee{b}=−{c} \\ $$$$\mathrm{Because}\:\mathrm{of}\:\mathrm{symmetry}\:\mathrm{let}\:{b}=−{c} \\ $$$$\Rightarrow\:\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}=\frac{\mathrm{1}}{{a}+{b}+{c}}=\frac{\mathrm{1}}{{a}} \\ $$$$\Rightarrow\:\frac{\mathrm{1}}{{a}^{\mathrm{2}{n}+\mathrm{1}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}{n}+\mathrm{1}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}{n}+\mathrm{1}} }=\frac{\mathrm{1}}{{a}^{\mathrm{2}{n}+\mathrm{1}} +{b}^{\mathrm{2}{n}+\mathrm{1}} +{c}^{\mathrm{2}{n}+\mathrm{1}} }= \\ $$$$=\frac{\mathrm{1}}{\left({a}+{b}+{c}\right)^{\mathrm{2}{n}+\mathrm{1}} }=\frac{\mathrm{1}}{{a}^{\mathrm{2}{n}+\mathrm{1}} }\:\forall{n}\in\mathbb{N} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *