Menu Close

1-a-2-x-2-3-2-solve-the-integration-




Question Number 28703 by students last updated on 29/Jan/18
(1/((a^2 +x^2 )^(3/2) ))   solve the integration
$$\frac{\mathrm{1}}{\left({a}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} }\:\:\:{solve}\:{the}\:{integration} \\ $$
Commented by abdo imad last updated on 29/Jan/18
let put I= ∫  (dx/((a^2 +x^2 )^(3/2) ))  if a≠0  the ch. x =atanθ give  I=  ∫  (1/((a^2 (1+tan^2 θ)^(3/2) )) a(1+tan^2 θ)  = (1/a^2 ) ∫(1+tan^2 θ)^(1−(3/2)) dθ =(1/a^2 )  ∫  (dθ/( (√(1+tan^2 θ))))  =(ξ/a^2 ) ∫ cosθ dθ =(ξ/a^2 ) sinθ +k =(ξ/a^2 ) sin(arctan((x/a))) +k  and  ξ^2 =1.  if a=0  I= ∫ x^(−3) dx = (1/(−3+1)) x^(−3+1)  +k  = ((−1)/(2x^2 )) +k.
$${let}\:{put}\:{I}=\:\int\:\:\frac{{dx}}{\left({a}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\:{if}\:{a}\neq\mathrm{0}\:\:{the}\:{ch}.\:{x}\:={atan}\theta\:{give} \\ $$$${I}=\:\:\int\:\:\frac{\mathrm{1}}{\left({a}^{\mathrm{2}} \left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \right.}\:{a}\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right) \\ $$$$=\:\frac{\mathrm{1}}{{a}^{\mathrm{2}} }\:\int\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right)^{\mathrm{1}−\frac{\mathrm{3}}{\mathrm{2}}} {d}\theta\:=\frac{\mathrm{1}}{{a}^{\mathrm{2}} }\:\:\int\:\:\frac{{d}\theta}{\:\sqrt{\mathrm{1}+{tan}^{\mathrm{2}} \theta}} \\ $$$$=\frac{\xi}{{a}^{\mathrm{2}} }\:\int\:{cos}\theta\:{d}\theta\:=\frac{\xi}{{a}^{\mathrm{2}} }\:{sin}\theta\:+{k}\:=\frac{\xi}{{a}^{\mathrm{2}} }\:{sin}\left({arctan}\left(\frac{{x}}{{a}}\right)\right)\:+{k} \\ $$$${and}\:\:\xi^{\mathrm{2}} =\mathrm{1}. \\ $$$${if}\:{a}=\mathrm{0}\:\:{I}=\:\int\:{x}^{−\mathrm{3}} {dx}\:=\:\frac{\mathrm{1}}{−\mathrm{3}+\mathrm{1}}\:{x}^{−\mathrm{3}+\mathrm{1}} \:+{k} \\ $$$$=\:\frac{−\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }\:+{k}. \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *