Question Number 124707 by Mammadli last updated on 05/Dec/20
![1. A=(3152) , A^(−1) =? 2. Solve the equation: ∣2x611∣=0 3. Calculate the determinant: ∣132 21 13 42∣](https://www.tinkutara.com/question/Q124707.png)
$$\mathrm{1}.\:\boldsymbol{{A}}=\left(\mathrm{3152}\right)\:,\:\:\boldsymbol{{A}}^{−\mathrm{1}} =? \\ $$$$\mathrm{2}.\:\boldsymbol{{Solve}}\:\boldsymbol{{the}}\:\boldsymbol{{equation}}: \\ $$$$\mid\mathrm{2}\boldsymbol{{x}}\mathrm{611}\mid=\mathrm{0} \\ $$$$\mathrm{3}.\:\boldsymbol{{Calculate}}\:\boldsymbol{{the}}\:\boldsymbol{{determinant}}: \\ $$$$\mid\mathrm{132}\:\mathrm{21}\:\mathrm{13}\:\mathrm{42}\mid \\ $$
Commented by MJS_new last updated on 05/Dec/20
![once you open a new question there′s a menue on top: help ∣_(Color) ^(Font&) ∣_(Drawing) ^(Insert) ∣_(&Tables) ^(Matrix) ∣... use this so we are able to understand what you mean](https://www.tinkutara.com/question/Q124713.png)
$$\mathrm{once}\:\mathrm{you}\:\mathrm{open}\:\mathrm{a}\:\mathrm{new}\:\mathrm{question}\:\mathrm{there}'\mathrm{s}\:\mathrm{a}\:\mathrm{menue} \\ $$$$\mathrm{on}\:\mathrm{top}: \\ $$$$\mathrm{help}\:\mid_{\mathrm{Color}} ^{\mathrm{Font\&}} \mid_{\mathrm{Drawing}} ^{\mathrm{Insert}} \mid_{\&\mathrm{Tables}} ^{\mathrm{Matrix}} \mid… \\ $$$$\mathrm{use}\:\mathrm{this}\:\mathrm{so}\:\mathrm{we}\:\mathrm{are}\:\mathrm{able}\:\mathrm{to}\:\mathrm{understand}\:\mathrm{what} \\ $$$$\mathrm{you}\:\mathrm{mean} \\ $$
Commented by Mammadli last updated on 05/Dec/20
Dear ser, was written as I wrote
Answered by liberty last updated on 05/Dec/20
![do you meant A= (((3 1)),((5 2)) ) ? A^(−1) = (1/(6−5)) ((( 2 −1)),((−5 3)) ) = ((( 2 −1)),((−5 3)) )](https://www.tinkutara.com/question/Q124714.png)
$${do}\:{you}\:{meant}\:{A}=\begin{pmatrix}{\mathrm{3}\:\:\:\:\:\mathrm{1}}\\{\mathrm{5}\:\:\:\:\:\mathrm{2}}\end{pmatrix}\:?\: \\ $$$$\:{A}^{−\mathrm{1}} \:=\:\frac{\mathrm{1}}{\mathrm{6}−\mathrm{5}}\:\begin{pmatrix}{\:\:\:\mathrm{2}\:\:\:\:\:−\mathrm{1}}\\{−\mathrm{5}\:\:\:\:\:\:\:\mathrm{3}}\end{pmatrix}\:=\:\begin{pmatrix}{\:\:\:\mathrm{2}\:\:\:\:\:\:−\mathrm{1}}\\{−\mathrm{5}\:\:\:\:\:\:\:\:\:\mathrm{3}}\end{pmatrix} \\ $$