Menu Close

1-a-a-arctg-x-x-dx-




Question Number 144143 by ArielVyny last updated on 22/Jun/21
∫_(1/a) ^a ((arctg(x))/x)dx=???
$$\int_{\frac{\mathrm{1}}{{a}}} ^{{a}} \frac{{arctg}\left({x}\right)}{{x}}{dx}=??? \\ $$
Answered by mathmax by abdo last updated on 22/Jun/21
I=∫_(1/a) ^a  ((arctanx)/x)dx ⇒I=_(x=(1/t))    −∫_(1/a) ^a  (((π/2)−arctant)/(1/t))(−(dt/t^2 ))  =(π/2)∫_(1/a) ^a (dt/t) −∫_(1/a) ^a  ((arctant)/t)dt =(π/2)[log∣t∣]_(1/a) ^a  −I ⇒  2I=(π/2)(2log∣a∣) ⇒I=(π/2)log∣a∣
$$\mathrm{I}=\int_{\frac{\mathrm{1}}{\mathrm{a}}} ^{\mathrm{a}} \:\frac{\mathrm{arctanx}}{\mathrm{x}}\mathrm{dx}\:\Rightarrow\mathrm{I}=_{\mathrm{x}=\frac{\mathrm{1}}{\mathrm{t}}} \:\:\:−\int_{\frac{\mathrm{1}}{\mathrm{a}}} ^{\mathrm{a}} \:\frac{\frac{\pi}{\mathrm{2}}−\mathrm{arctant}}{\frac{\mathrm{1}}{\mathrm{t}}}\left(−\frac{\mathrm{dt}}{\mathrm{t}^{\mathrm{2}} }\right) \\ $$$$=\frac{\pi}{\mathrm{2}}\int_{\frac{\mathrm{1}}{\mathrm{a}}} ^{\mathrm{a}} \frac{\mathrm{dt}}{\mathrm{t}}\:−\int_{\frac{\mathrm{1}}{\mathrm{a}}} ^{\mathrm{a}} \:\frac{\mathrm{arctant}}{\mathrm{t}}\mathrm{dt}\:=\frac{\pi}{\mathrm{2}}\left[\mathrm{log}\mid\mathrm{t}\mid\right]_{\frac{\mathrm{1}}{\mathrm{a}}} ^{\mathrm{a}} \:−\mathrm{I}\:\Rightarrow \\ $$$$\mathrm{2I}=\frac{\pi}{\mathrm{2}}\left(\mathrm{2log}\mid\mathrm{a}\mid\right)\:\Rightarrow\mathrm{I}=\frac{\pi}{\mathrm{2}}\mathrm{log}\mid\mathrm{a}\mid \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *